删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

高效率的MEMS陀螺管芯动态特性测试方法

清华大学 辅仁网/2017-07-07

高效率的MEMS陀螺管芯动态特性测试方法
邓焱1(),邢超1,2,张嵘1,周斌1
2. 中国人民解放军 63888部队, 济源 459000
Rapid testing of the dynamic characteristics of MEMS gyroscope chips
Yan DENG1(),Chao XING1,2,Rong ZHANG1,Bin ZHOU1
1. State Key Laboratory of Precision Measurement Technology and Instruments,Department of Precision Instruments, Tsinghua University, Beijing 100084, China
2. Unit 63888, PLA, Jiyuan 459000, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要陀螺管芯是微机电(MEMS)陀螺的核心器件,利用多频激励方法可以提高陀螺管芯的动态特性测试效率。该文基于静电激励-电容检测的原理进行线振动MEMS陀螺的动态特性测试,构造了线性初始相位差分布的等幅多频激励信号解决合成信号最大值限制的问题。用多频激励方法,完成频率分辨率为1 Hz、 谐振频率3 000 Hz附近601个频率点的单个模态测试只需1.5 s。多频激励和正弦扫频激励对比测试表明: 两种方法测得幅、相频特性曲线几乎完全相同; 谐振频率、幅值和相位的测试重复性相近; 但多频方法测试精度略低于扫频激励。多频方法完全可满足大批量管芯装配前的筛选和配对测试的迫切需求。

关键词 试验、测试技术与方法,动态特性测试,微机电(MEMS)陀螺管芯,多频激励
Abstract:The gyroscope chip is the key component of micro electro mechanical system (MEMS) gyroscopes. The multi-frequency signal excitation method is used to improve the efficiency of dynamic characteristic tests of such chips. The dynamic characteristics of the linear vibration MEMS gyroscope are analyzed using electrostatic excitation and capacitive detection. A multi-frequency signal with an equivalent amplitude and a linear initial phase difference distribution is constructed to fit the maximum amplitude limit of the exciting signal. This method takes only 1.5 s to finish one modal test with 601 frequency points and 1 Hz frequency resolution around the 3 000 Hz resonance frequency. The multi-frequency method acquires almost the same amplitude-frequency and phase-frequency curves as the traditional sine wave sweep excitation method and their repeatabilities for the resonance frequency and corresponding amplitude and phase are similar. Although the testing accuracy of the multi-frequency method is a little lower than that of the sine wave sweep method, the multi-frequency method can be used to test large numbers of gyroscope chips for filtering and pairing.

Key wordsexperiment/test technology and methoddynamic characteristics testmicro electro mechanical system (MEMS) gyroscope chipmulti-frequency signal excitation
收稿日期: 2013-10-08 出版日期: 2015-03-17
引用本文:
邓焱,邢超,张嵘,周斌. 高效率的MEMS陀螺管芯动态特性测试方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 811-814.
Yan DENG,Chao XING,Rong ZHANG,Bin ZHOU. Rapid testing of the dynamic characteristics of MEMS gyroscope chips. Journal of Tsinghua University(Science and Technology), 2014, 54(6): 811-814.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I6/811


图表:
线振动MEMS陀螺的结构示意图
合成信号最大峰值与频率点总数的关系曲线
幅、相频特性曲线测试结果
参数 均值 标准差 均值差值
扫频谐振频率/Hz 3 164 0
扫频幅值/dB 16.244 0.002
扫频相位/(°) 91.103 0.021
多频谐振频率/Hz 3 164 0 0
多频幅值/dB 16.245 0.003 0.001
多频相位/(°) 91.110 0.023 0.007


检测轴驱动检测轴检测测试结果
参数 均值 标准差 均值差值
扫频谐振频率/Hz 2 956 0
扫频幅值/dB -10.458 0.001
扫频相位/(°) 86.660 0.039
多频谐振频率/Hz 2 957 0 1
多频幅值/dB -10.000 0.005 0.458
多频相位/(°) 81.897 0.171 -4.763


驱动轴驱动驱动轴检测测试结果
均值 标准差 均值差值
扫频谐振频率/Hz 3 063 0
扫频幅值/dB -10.271 0.005
扫频相位/(°) 85.712 0.036
多频谐振频率/Hz 3 063.5 0 0.5
多频幅值/dB -10.044 0.001 0.227
多频相位/(°) 84.956 0.038 -0.756


驱动轴驱动驱动轴检测相同幅值测试结果


参考文献:
[1] ZHANG Nuer, REN Yongfeng, LI Shengkun. Research on testing method of dynamic characteristic for MEMS-gyroscope[J]. Advanced Materials Research, 2012, 346: 515-520.
[2] DENG Yan, XING Chao, ZHOU Bin. Automated calibration system for IMU based on database and LabVIEW [J]. Applied Mechanics and Materials, 2013, 333-335: 2396-2400.
[3] ZHU Huijie, JIN Zhonghe, HU Shichang, et al.Constant-frequency oscillation control for vibratory micro-machined gyroscopes[J].Sensors and Actuators, A: Physical, 2013, 193: 193-200.
[4] 周斌, 高钟毓, 陈怀, 等. 微机械陀螺数字读出系统及其解调算法[J]. 清华大学学报: 自然科学版, 2004, 44(5): 637-640. ZHOU Bin, GAO Zhongyu, CHEN Huai, et al.Digital readout system for a micro-machined gyroscope and its demodulation algorithm[J]. J Tsinghua University: Science and Technology, 2004, 44(5): 637-640. (in Chinese)
[5] Gaisser A, GAO Zhongyu, ZHANG Rong, et al.On-line self-testing for micro-machined gyroscopes[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2005, 22(2): 98-102.
[6] 李锦明, 张文栋, 李林. 电容式微机械陀螺品质因子测试方法研究[J]. 中北大学学报: 自然科学版, 2006, 27(4): 357-360. LI Jinming, ZHANG Wendong, LI Lin. A research on the testing method for the quality factor of capacitive microgyroscopes[J]. J North University of China: Natural Science Edition, 2006, 27(4): 357-360. (in Chinese)
[7] 何春华, 崔健, 闫俊杰, 等. 基于LabVIEW的微机械陀螺自动测试系统开发[J]. 传感技术学报, 2011, 24(2): 170-174. HE Chunhua, CUI Jian, YAN Junjie, et al.Development of automatic test system for micromachined gyroscope based on LabVIEW[J]. Chinese Journal of Sensors and Actuators, 2011, 24(2): 170-174. (in Chinese)
[8] Vladimir S, Yong C C, Byeung L L, et al. Development of a gyro test system at SAMSUNG Advanced Institute of Technology [C]// Proc Position Location and Navigation Symposium. Monterey, CA, 2004: 133-142.
[9] 赵寄晨, 谢文怡, 蔡建法, 等. 基于LabVIEW的微机械陀螺动态参数的测试[J]. 计算机测量与控制, 2013, 21(3): 580-585. ZHAO Jichen, XIE Wenyi, CAI Jianfa, et al.Dynamic parameters test of micro-machined gyroscope based on LabVIEW[J]. Computer Measurement and Control, 2013, 21(3): 580-585. (in Chinese)
[10] 徐淑静, 高振宁. 一种新的微机械陀螺品质因数测试方法[J]. 微纳电子技术, 2011, 48(6): 391-394. XU Shujing, GAO Zhenning. A new test method for the quality factor of MEMS gyroscopes[J]. Micro Nanoelectronic Technology, 2011, 48(6): 391-394. (in Chinese)
[11] 刘忠卿, 张嵘. 微机械陀螺管芯测试方法[J]. 传感器与微系统, 2008, 27(8): 111-116. LIU Zhongqing, ZHANG Rong. Test method of micromachined gyroscope chip[J]. Transducer and Microsystem Technologies, 2008, 27(8): 111-116. (in Chinese)
[12] 王晓艳, 王海峰. 基于多频声信号的虚拟扫频仪的设计与实现 [C]// 电工理论与新技术学术年会论文集. 西安, 2005: 229-232. WANG Xiaoyan, WANG Haifeng. Design and implementation of virtual sweep generator based on multi-frequency acoustic signal [C]// Proc Annual Conference Electrician Theory and New Technology. Xi'an, China, 2005: 229-232. (in Chinese)


相关文章:
No related articles found!

相关话题/测试 微机 信号 技术 系统