|
|
燃料乙醇系统不确定性分析及优化 |
张志强1,胡山鹰1(),陈定江1,沈静珠1,杜风光2 |
2. 河南天冠企业集团有限公司, 南阳 473000 |
|
Uncertainty analysis and optimization of the fuel ethanol system |
Zhiqiang ZHANG1,Shanying HU1(),Dingjiang CHEN1,Jingzhu SHEN1,Fengguang DU2 |
1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China 2. Tianguan Enterprise Group Company Limited, Nanyang 473000, China |
|
文章导读 |
|
摘要为解决燃料乙醇企业面临的诸如原料产品市场价格波动,工艺参数不断变化等不确定性条件影响下的生产经营决策问题,进一步降低系统成本及提高整体效益,该文分析了系统可能存在不确定性的影响因素,建立了在这些因素影响下的2类随机规划模型。以纤维素乙醇系统为案例对企业在设计阶段面临的设计裕量问题和运行阶段面临的原料结构问题加以研究,建立了针对性的两层随机机会约束规划模型并设计了智能优化算法进行求解。求解结果表明:不确定性较确定性优化更为合理,且能够在节省系统成本的同时增强系统对未来风险的抵抗能力。
|
关键词 :乙醇,不确定性,优化 |
Abstract:Decision-making in fuel ethanol production faces many uncertainties arising from raw material and product price fluctuations, and process parameter changes. This study analyzes how to reduce the costs and improve the overall efficiency even with these system uncertainties using two types of system uncertainty optimization models with these factors. The research uses a cellulosic ethanol system as a sample case to analyze the design margin problems in the design phase and the raw-material structural problems in the operating phase. The analysis uses stochastic chance-constrained programming model. The results show that uncertainty optimization is more reasonable than certainty optimization, and that the model can reduce costs as well as enhance the system risk resistance.
|
Key words:ethanoluncertaintyoptimization |
收稿日期: 2013-01-06 出版日期: 2015-09-03 |
|
基金资助:国家 “十一五” 科技支撑计划资助项目 (2006BAC02A17) |
[1] | Herrera S. Industrial biotechnology—A chance at redemption[J]. Nature Biotechnology, 2004, 22(6): 671-675. |
[2] | Mitchell C P. Development of decision support systems for bioenergy applications[J]. Biomass and Bioenergy, 2000(18): 265-278. |
[3] | Cardona C A, Sanchez O' J. Fuel ethanol production: Process design trends and integration opportunities[J]. Bioresource Technology, 2007, 98(12): 2415-2457. |
[4] | Guo Y, Hu S Y, Li Y R, et al.Optimization and analysis of a bioethanol agro-industrial system from sweet sorghum[J]. Renewable Energy xxx (2010): 1-8. |
[5] | Azapagic A. Life cycle assessment and its application to process selection, design and optimisation[J]. Chemical Engineering Journal, 1999, 73(1): 1-21. |
[6] | Azapagic A, Clift R. Life cycle assessment and multiobjective optimisation[J]. Journal of Cleaner Production, 1999, 7(2): 135-143. |
[7] | Azapagic A, Millingtona A, Collett A. A methodology for integrating sustainability considerations into process design[J]. Chemical Engineering Research and Design, 2006, 84(6): 439-452. |
[8] | Liu B D. Uncertain Programming[M]. New York, USA: John Wiley & Sons, 1999. |
[9] | Jeremy C J. Technology assessment of biomass ethanol: A multi-objective, lifecycle approach under uncertainty [D]. Cambridge, USA: Massachusetts Institute of Technology, 2006. |
[10] | Huang Y X, Chen C W, Fan Y Y, et al.Multistage optimization of the supply chains of biofuels[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(6): 820-830. |
[11] | Leduc S, Starfelt F, Dotzauer E. Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden[J]. Energy, 2010(35): 2709-2716. |
[12] | Martina M, Grossmanna I E. Superstructure optimization of lignocellulosic bioethanol plants[J]. Computer Aided Chemical Engineering, 2010, 28: 943-948. |
[13] | Beynon M J, Munday M. Considering the effects of imprecision and uncertainty in ecological footprint estimation: An approach in a fuzzy environment[J]. Ecological Economics, 2008, 67(3): 373-383. |
[14] | Tan R R, Ballacillo J B. A fuzzy multiple-objective approach to the optimization of bioenergy system footprints[J]. Chemical Engineering Research and Design, 2009(87): 1162-1170. |