删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

燃料乙醇系统不确定性分析及优化

清华大学 辅仁网/2017-07-07

燃料乙醇系统不确定性分析及优化
张志强1,胡山鹰1(),陈定江1,沈静珠1,杜风光2
2. 河南天冠企业集团有限公司, 南阳 473000
Uncertainty analysis and optimization of the fuel ethanol system
Zhiqiang ZHANG1,Shanying HU1(),Dingjiang CHEN1,Jingzhu SHEN1,Fengguang DU2
1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
2. Tianguan Enterprise Group Company Limited, Nanyang 473000, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要为解决燃料乙醇企业面临的诸如原料产品市场价格波动,工艺参数不断变化等不确定性条件影响下的生产经营决策问题,进一步降低系统成本及提高整体效益,该文分析了系统可能存在不确定性的影响因素,建立了在这些因素影响下的2类随机规划模型。以纤维素乙醇系统为案例对企业在设计阶段面临的设计裕量问题和运行阶段面临的原料结构问题加以研究,建立了针对性的两层随机机会约束规划模型并设计了智能优化算法进行求解。求解结果表明:不确定性较确定性优化更为合理,且能够在节省系统成本的同时增强系统对未来风险的抵抗能力。

关键词 乙醇,不确定性,优化
Abstract:Decision-making in fuel ethanol production faces many uncertainties arising from raw material and product price fluctuations, and process parameter changes. This study analyzes how to reduce the costs and improve the overall efficiency even with these system uncertainties using two types of system uncertainty optimization models with these factors. The research uses a cellulosic ethanol system as a sample case to analyze the design margin problems in the design phase and the raw-material structural problems in the operating phase. The analysis uses stochastic chance-constrained programming model. The results show that uncertainty optimization is more reasonable than certainty optimization, and that the model can reduce costs as well as enhance the system risk resistance.

Key wordsethanoluncertaintyoptimization
收稿日期: 2013-01-06 出版日期: 2015-09-03
ZTFLH: 
基金资助:国家 “十一五” 科技支撑计划资助项目 (2006BAC02A17)
引用本文:
张志强, 胡山鹰, 陈定江, 沈静珠, 杜风光. 燃料乙醇系统不确定性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(5): 643-648.
Zhiqiang ZHANG, Shanying HU, Dingjiang CHEN, Jingzhu SHEN, Fengguang DU. Uncertainty analysis and optimization of the fuel ethanol system. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 643-648.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I5/643


图表:
某企业410组乙醇发酵产率数据
某企业2006~2010年410组副产品饲料中蛋白质质量分数
基于随机模拟的遗传算法求解思路
案例生产流程示意图
原料价格 平均值 方差
小麦秸秆/(元·t-1) 500 50
玉米秸秆/(元·t-1) 300 40
其他稻秸/(元·t-1) 200 40


原料价格参数(Lognormal分布)
名称 成分 占产品质量分数要求 满足概率
副产品1 淀粉 >0.8 0.95
副产品2 蛋白 >0.1 0.95
副产品3 蛋白 >0.32 0.95
副产品4 蛋白 <0.4 0.95


产品组分约束条件
设备 规模 规模因子
数值 单位
埋刮板输送机 200 t·h-1 1 0.6
液化罐 200 m3 1.98 0.71
糖化罐 150 m3 9 0.71
发酵罐 3 000 m3 210 0.71
粗馏塔 - - 115 0.68
精馏塔 - - 150 0.68
分子筛 - - 27 0.7
锅炉 130 t·h-1 680 0.68
汽轮机 12 MW 245 0.71


部分关键设备投资基础数据
不确定优化结果 确定优化结果
设备名称 规模/(万t·a-1) 设备名称 规模/(万t·a-1)
A11 1.812 A11 1.802
A12 2.133 A12 2.118
A13 7.533 A13 8.21
A21 0.428 A21 0.399
A22 0.43 A22 0.425
A31 2.512 A31 3.208
A32 10.811 A32 10.211
A33 1.277 A33 1.301
B11 12.121 B11 11.919
B12 8.242 B12 7.989
C11 1.354 C11 1.101
D11 4.287 D11 4.353


设备规模优化结果列表
不确定优化结果 确定优化结果
投资/万元 收益(万元·a-1) 投资/万元 收益(万元·a-1)
16 701 4 681 15 986 4 122


投资收益优化结果列表
副产品4中蛋白质质量分数分布情况


参考文献:
[1] Herrera S. Industrial biotechnology—A chance at redemption[J]. Nature Biotechnology, 2004, 22(6): 671-675.
[2] Mitchell C P. Development of decision support systems for bioenergy applications[J]. Biomass and Bioenergy, 2000(18): 265-278.
[3] Cardona C A, Sanchez O' J. Fuel ethanol production: Process design trends and integration opportunities[J]. Bioresource Technology, 2007, 98(12): 2415-2457.
[4] Guo Y, Hu S Y, Li Y R, et al.Optimization and analysis of a bioethanol agro-industrial system from sweet sorghum[J]. Renewable Energy xxx (2010): 1-8.
[5] Azapagic A. Life cycle assessment and its application to process selection, design and optimisation[J]. Chemical Engineering Journal, 1999, 73(1): 1-21.
[6] Azapagic A, Clift R. Life cycle assessment and multiobjective optimisation[J]. Journal of Cleaner Production, 1999, 7(2): 135-143.
[7] Azapagic A, Millingtona A, Collett A. A methodology for integrating sustainability considerations into process design[J]. Chemical Engineering Research and Design, 2006, 84(6): 439-452.
[8] Liu B D. Uncertain Programming[M]. New York, USA: John Wiley & Sons, 1999.
[9] Jeremy C J. Technology assessment of biomass ethanol: A multi-objective, lifecycle approach under uncertainty [D]. Cambridge, USA: Massachusetts Institute of Technology, 2006.
[10] Huang Y X, Chen C W, Fan Y Y, et al.Multistage optimization of the supply chains of biofuels[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(6): 820-830.
[11] Leduc S, Starfelt F, Dotzauer E. Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden[J]. Energy, 2010(35): 2709-2716.
[12] Martina M, Grossmanna I E. Superstructure optimization of lignocellulosic bioethanol plants[J]. Computer Aided Chemical Engineering, 2010, 28: 943-948.
[13] Beynon M J, Munday M. Considering the effects of imprecision and uncertainty in ecological footprint estimation: An approach in a fuzzy environment[J]. Ecological Economics, 2008, 67(3): 373-383.
[14] Tan R R, Ballacillo J B. A fuzzy multiple-objective approach to the optimization of bioenergy system footprints[J]. Chemical Engineering Research and Design, 2009(87): 1162-1170.


相关文章:
[1]郝琛, 李富, 郭炯. 球床式高温气冷堆球流混流的模拟[J]. 清华大学学报(自然科学版), 2014, 54(5): 624-628.
[2]许述财, 邹猛, 魏灿刚, 王龙臻, 张金换, 于用军. 仿竹结构薄壁管的轴向耐撞性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(3): 299-304.
[3]韩俊, 温风波, 赵广播. 小展弦比涡轮叶片的弯曲优化设计[J]. 清华大学学报(自然科学版), 2014, 54(1): 102-108.

相关话题/优化 系统 投资 设计 分数