|
摘要高压IGBT串联是提高大容量变换器电压等级和容量的有效手段之一,但器件串联带来的复杂机械结构为母排设计与杂散参数建模分析带来巨大的困难,常规的部分单元等效电路(PEEC)方法直接用于该领域难以保证准确性。该文提出了一种应用于提取大尺寸复杂结构母排杂散参数的改进的PEEC方法和结构设计准则,采用分块计算方式建立了母排杂散参数模型。在实际的4.5 kV/600 A高压IGBT串联试验平台上进行了系列高压大电流试验,在剔除换流二极管正向特性影响的条件下,对比实验和仿真结果分析了母排杂散参数对器件暂态的影响,证明了该方法的准确性与实用性。该设计方法降低了杂散参数,提升了变换器运行的可靠性,并为主动控制创造了有利条件。
|
关键词 :大容量,母排,杂散参数,部分单元等效电路 |
Abstract:High-voltage IGBTs series are one of the most effective means to improve converter voltage levels and capacities. However, the complex mechanical structure when the devices are used in series complicates bus bar design and stray parameter modeling. The results may not be accurate if the conventional PEEC method is used. This paper describes the bus bar design principles and ways to improve the PEEC method when extracting large complex structure bus bar stray parameters. The bus bar parameter model is based on the partitioning calculation result. The influence of stray parameters during the switch transient process is illustrated by simulations and tests on a 4.5kV/600A HVIGBTs series experimental platform with consideration of the diode forward recovery characteristics. The results illustrate the accuracy and practicality of the method and how bus bar design effectively reduces the stray parameters and creates favorable conditions for active control.
|
Key words:high capacitybus barstray parameterpartial element equivalent circuit |
收稿日期: 2013-07-15 出版日期: 2015-04-17 |
基金资助:国家 “八六三” 高技术项目 (2011AA050402) |
[1] | Caponet C, Profumo D, Doncker W, et al.Low stray inductance bus bar design and construction for good EMC performance in power electronic circuits [J]. IEEE Transactions on Power Electronics, 2002, 2(17): 225-231. |
[2] | Zare F, Ledwich F. Reduced layer planar busbar for voltage source inverters[J]. IEEE Transactions on Power Electronics, 2002, 17(4): 508-516. |
[3] | YUAN Liqiang, YU Hualong, WANG Xuesong, et al.Design, simulation and analysis of the low stray inductance bus bar for voltage source inverters [C]// Proc of 14th Int Conf on Electrical Machines and Systems (ICEMS 2011). Beijing, China: IEEE Press, 2011: 1-5. |
[4] | JIShiqi, ZHAO Zhengming, YUAN Liqiang, et al.HVIGBT physical model analysis during transient[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2616-2624. |
[5] | YUANLiqiang, ZHAO Zhengming, BAI Hua, et al.The IGCT test platform for voltage source inverters [C]// Proc of The Fifth Int Conf on Power Electronics and Drive Systems. Beijing, China: IEEE Press, 2003, 2: 1291-1294. |
[6] | ZOU Gaoyu, ZHAO Zhengming, YUAN Liqiang. Study on DC busbar structure considering stray inductance for the back-to-back IGBT-based converter [C]// Proc of IEEE Applied Power Electronics Conference and Exposition, Long Beach, CA, USA: IEEE Press, 2013: 1213-1218. |
[7] | YUAN Liqiang, YU Hualong, WANG Xuesong, et al.The Large-size Low-stray-parameter Planar Bus Bar for High Power IGBT-based Inverters [C]// Proc of 15th Int Conf on Electrical Machines and Systems. Sapporo, Japan: IEEE Press, 2012: 1-5. |
[8] | Schanen J.L, Clavel E, Roudet J. Modeling of low inductive busbar connections[J]. Industry Applications Magazine, IEEE, 1996, 2(5): 39-43. |
[9] | 易荣, 赵争鸣, 袁立强. 高压大容量变换器中母排的优化设计[J]. 电工技术学报, 2008, 23(8): 94-100. YI Rong, ZHAO Zhengming, YUAN Liqiang. Busbar optimization design for high power converters[J]. Transactions of China Electro technical Society, 2008, 23(8): 94-100. (in Chinese) |
[10] | 李方正, 孙旭东, 黄立培, 等. 大容量变流器复杂形状直流母线的PEEC 建模[J]. 清华大学学报(自然科学版), 2009, 49(8): 1089-1092. LI Fangzheng, SUN Xudong, HUANG Lipei, et al.PEEC modeling of complex DC bus of high power converters[J]. Journal of Tsinghua University: Science and Technology, 2009, 49(8): 1089-1092. (in Chinese) |
[11] | QIUZhiling, ZHANG Hongyan, CHEN Guozhu. Study and design of noninductive bus bar for high power switching converter [C]// Proc of Power Electronics and Motion Control Conference. Shanghai, China. IEEE Press, 2006, 2: 1-4. |
[12] | Withanage R, Crookes W, Shammas N. Novel voltage balancing technique for series connection of IGBTs [C]// Proc of European Conf of Power Electronics and Applications. Aalborg, Denmark. IEEE Press, 2007: 1-10. |