删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

过失速机动飞机内回路鲁棒解耦控制

清华大学 辅仁网/2017-07-07

过失速机动飞机内回路鲁棒解耦控制
周池军1,2, 朱纪洪1, 雷虎民2, 袁夏明1, 尹航1
1. 清华大学计算科学与技术系, 北京 100084;
2. 空军工程大学防空反导学院, 西安 710051
Robust decoupling inner-loop control for a post-stall maneuverable fighter
ZHOU Chijun1,2, ZHU Jihong1, LEI Humin2, YUAN Xiaming1, YIN Hang1
1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
2. Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要针对过失速机动存在的非线性和强耦合问题,提出了一种内回路鲁棒解耦控制方法。控制器设计分为力矩补偿、线性控制和鲁棒补偿这3部分:首先通过查询气动数据库对阻尼力矩以外的气动力矩、惯性耦合力矩及推力附加力矩进行实时补偿;然后利用参考模型对补偿后的线性参数系统设计比例积分控制器;在此基础上采用正弦函数表征气动力矩系数和推力参数摄动,推导了模型不确定性的解析表达式,并采用滑模控制方法进行鲁棒补偿器设计。仿真结果表明:保留阻尼项的设计方案可以有效降低控制能量消耗;所设计的控制器具有较强的鲁棒性,在气动系数和控制系数的最大幅值摄动分别为60%和20%的情况下,仍然能够稳定跟踪参考指令并实现Herbst机动。
关键词 过失速机动,阻尼力矩,参考模型,参数摄动,鲁棒补偿,Herbst机动
Abstract:A robust decoupling control approach was developed for a strongly nonlinear and strongly coupled inner-loop system for post-stall maneuvers. The control process includes moment compensation, linear controller design and robust compensation. The aerodynamic moment, inertial coupling moment and additional moment caused by the thrust vector are first compensated through querying an aerodynamic database with the damping moment not included. A second-order reference model is then employed to determine the proportional and integral coefficients of the linear controller. A series of aerodynamic moment derivatives and thrust force parameter perturbations are then described by sine functions to get an analytical expression for the model uncertainty and a robust compensator based on the sliding mode control methodology. Simulations show that the energy consumption can be reduced when the aerodynamic damping moment is not included. Moreover, the Herbst maneuver and robust command tracking can be achieved, even with 60% parameter perturbations in the aerodynamic derivatives and 20% perturbations with the control derivatives.
Key wordspost-stall maneuversdamping momentreference modelparameter perturbationrobust compensationHerbst maneuver
收稿日期: 2015-01-23 出版日期: 2015-12-01
ZTFLH:V249.1
通讯作者:朱纪洪,教授,E-mail:jhzhu@tsinghua.edu.cnE-mail: jhzhu@tsinghua.edu.cn
引用本文:
周池军, 朱纪洪, 雷虎民, 袁夏明, 尹航. 过失速机动飞机内回路鲁棒解耦控制[J]. 清华大学学报(自然科学版), 2015, 55(11): 1197-1207.
ZHOU Chijun, ZHU Jihong, LEI Humin, YUAN Xiaming, YIN Hang. Robust decoupling inner-loop control for a post-stall maneuverable fighter. Journal of Tsinghua University(Science and Technology), 2015, 55(11): 1197-1207.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.21.011 http://jst.tsinghuajournals.com/CN/Y2015/V55/I11/1197


图表:
图1 系统的控制结构框图
图2 推力矢量控制示意图
表1 配平点的飞行参数
图3 系统的频域响应曲线
图4 系统的阶跃响应曲线
图5 控制能量消耗对比
表2 气动力矩系数和推力相关矩阵的参数摄动
图6 摄动1下的α 跟踪曲线
图7 摄动1下的ps 跟踪曲线
图8 摄动2下的α 跟踪曲线
图9 摄动2下的ps 跟踪曲线
图10 VTβχ 变化曲线
图11 气动操纵面偏转角变化曲线
图12 油门开度及推力矢量偏转角变化曲线
图13 滑模切换面变化曲线
图14 Herbst机动三维轨迹


参考文献:
[1] 比施根斯 Γ C. 超声速飞机空气动力学和飞行力学[M]. 上海:上海交通大学出版社, 2009.Besgas Γ C. Aerodynamics and Flight Dynamics for Supersonic Aircraft[M]. Shanghai:Shanghai Jiaotong University Press, 2009.(in Chinese)
[2] Xin M. Unified nonlinear optimal flight control and state estimation of highly maneuverable aircraft[J]. Aerospace Science and Technology, 2014, 37:70-80.
[3] Alcorn C W. The X-31 aircraft:Advances in aircraft agility and performance[J]. Progress in Aerospace Sciences, 1996, 32(4):377-413.
[4] Walker G, Steven S, Fuller J. F-35B integrated flight- propulsion control development[C]//International Powered Lift Conference. Los Angeles, CA, USA:AIAA Press, 2013, 4243.
[5] Atesoglu Ö, Özgören M K. Automated maneuvering control of a conventional tactical aircraft enhanced with thrust vectoring controls[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Portland, OR, USA:AIAA Press, 2011, 6636.
[6] Kolesnikov E. NDI-based flight control law design[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. San Francisco, CA, USA:AIAA Press, 2005, 5977.
[7] Burken J J, Williams-Hayes P, Kaneshige J T, et al. Adaptive control using neural network augmentation for a modified F-15 aircraft[C]//IEEE Mediterranean Conference on Control and Automation. Ancona, Italy:IEEE Press, 2006:1-6.
[8] Sieberling S, Chu Q P, Mulder J A. Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(6):1732-1742.
[9] Walker G P, Allen D A. X-35B STOVL flight control law design and flying qualities[C]//Proceedings of the Biennial International Powered Lift Conference and Exhibit. Williamsburg, VA, USA:AIAA Press, 2002, 6018.
[10] Bosworth J T. Flight results of the NF-15B intelligent flight control system(IFCS) aircraft with adaptation to a longitudinally destabilized plant[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, HI, USA:AIAA Press, 2008, 6985.
[11] Bowers A H, Pahle J W, Wilson R J, et al. An overview of the NASA F-18 high alpha research vehicle[R]. Washington DC, USA:NASA, 1996.
[12] Atesoglu Ö, Özgören M K. High-α flight maneuverability enhancement of a twin engine fighter-bomber aircraft for air combat superiority using thrust-vectoring control[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Keystone, SD, USA:AIAA Press, 2006, 6056.
[13] Atesoglu Ö, Özgören M K. Nonlinear robust controller design for high-α maneuvering enhancement of a fighter aircraft with aerodynamic and thrust vectoring controls[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, HI, USA:AIAA Press, 2008, 6488.
[14] Sonneveldt L, Chu Q P, Mulder J A. Nonlinear flight control design using constrained adaptive backstepping[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):322-336.
[15] 孙增圻.系统分析与控制[M]. 北京:清华大学出版社, 1994.SUN Zengqi. System Analysis and Control[M]. Beijing:Tsinghua University Press, 1994.(in Chinese)
[16] Mattei G, Monaco S. Nonlinear autopilot design for an asymmetric missile using robust backstepping control[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(5):1462-1476.
[17] HU Qinglei, JIANG Boyan, Friswell M I. Robust saturated finite time output feedback attitude stabilization for rigid spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1914-1929.


相关文章:
[1]付强, 朱纪洪, 王春平. 蛇形机动目标航迹旋转对射弹脱靶量的影响[J]. 清华大学学报(自然科学版), 2015, 55(8): 884-888.

相关话题/控制 设计 系统 北京 力学