删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

多向不规则波群传播的数值模拟

清华大学 辅仁网/2017-07-07

多向不规则波群传播的数值模拟
刘思, 张永良
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Numerical simulation of multidirectional irregular wave group propagation
LIU Si, ZHANG Yongliang
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要波群的模拟是与波群有关的数值和物理模型试验的前提。实际的波浪是多向的不规则波, 为了在实验水池中模拟多向不规则波群, 该文首先根据给定的波要素、群性参数和方向分布参数, 给出了多向不规则波群的数值模拟方法, 在此基础上利用有限元法求解改进的Boussinesq方程的数值计算模型, 建立了数值水池在指定位置模拟所要求群性的多向不规则波的入射波浪边界条件的计算方法。典型算例表明: 按照该文建议的方法确定入射波浪边界条件而建立的数值模型, 可以在水池指定位置处产生满足给定群性要求的多向不规则波浪。此外, 对多向不规则波群的传播进行了数值研究。
关键词 多向波,波群,群性参数,数值模拟
Abstract:Irregular wave group motion was simulated for comparison with physical model tests. Real waves are multidirectional waves. A numerical method was developed to simulate multidirectional irregular wave groups for various wave parameters, grouping factors and directional spreading parameters for use in designing an experimental wave basin for multidirectional irregular wave groups. The simulations of the wave time series of the incident waves was based on the numerical model of modified Boussinesq equations solved by finite element. Examples show that multidirectional waves containing the desired wave groupiness can be generated at a specified position in the numerical wave basin. Transformations of the wave groupings in the basin are also numerically analyzed.
Key wordsmultidirectional waveswave groupsgrouping factornumerical simulation
收稿日期: 2013-11-01 出版日期: 2016-01-12
ZTFLH:P731.22
通讯作者:张永良,教授,E-mail:yongliangzhang@mail.tsinghua.edu.cnE-mail: yongliangzhang@mail.tsinghua.edu.cn
引用本文:
刘思, 张永良. 多向不规则波群传播的数值模拟[J]. 清华大学学报(自然科学版), 2015, 55(12): 1289-1295.
LIU Si, ZHANG Yongliang. Numerical simulation of multidirectional irregular wave group propagation. Journal of Tsinghua University(Science and Technology), 2015, 55(12): 1289-1295.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.24.004 http://jst.tsinghuajournals.com/CN/Y2015/V55/I12/1289


图表:
图1 浪高仪布置形式图
图2 s=30、GFH=0.9、GLF=15 时数值模拟波浪分析结果
图3 实验测得群高和群长沿水槽的变化
图4 数值模拟群高和群长沿水槽的变化
图5 数值计算区域
图6 s=30,GFH=0.9、GLF=15时模拟分析结果
图7 s=30、GFH=0.9、GLF=15时测点 P1P6 处的频谱和波包谱
图8 s=30、GFH=0.5、GLF=6时测点 P1P6 处的频谱和波包谱
图9 数值模拟波浪群高和群长及有效波高沿水池纵向的变化
图10 数值模拟波浪群高和群长及有效波高沿水池横向


参考文献:
[1] Johnson R R, Mansard E P D, Ploeg J. Effects of wave grouping on breakwater stability [C]// Proceedings of the 16th International Conference on Coastal Engineering. Hamburg, Germany: The American Society of Civil Engineers, 1978: 2228-2243.
[2] Bowers E C. Harbour resonance due to set down beneath wave groups [J]. Journal of Fluid Mechanics, 1977, 79: 71-92.
[3] Wu J K, Liu P L F. Harbour excitations by incident wave groups [J]. Journal of Fluid Mechanics, 1990, 217: 595-613.
[4] Mansard E P D, Pratte B D. Moored ship response in irregular waves [C]// Proceedings of the 17th International Conference on Coastal Engineering. New York, USA: The American Society of Civil Engineers, 1982.
[5] Balaji R, Sannasiraj S A, Sundar V. Detection of wave groups from the motion behaviour of a discus buoy [J]. Journal of Hydro-Environoment Research, 2008, 1(3): 195-205.
[6] MA Xiaojian, SUN Zhaochen, ZHANG Zhiming, et al. The effect of wave groupiness on a moored ship studied by numerical simulations [J]. Journal of Hydrodynamics, 2011, 23(2): 145-153.
[7] Rye H. Ocean Wave Groups, UR-82-18 [R]. Trondheim, Norway: Department of Marine Technology, University of Trondheim, 1982.
[8] Funke E R, Mansard E P D. On the synthesis of realistic sea states in laboratory flume [C]// Proceedings of the 17th International Conference on Coastal Engineering. New York, USA: The American Society of Civil Engineers, 1980: 2974-2991.
[9] 徐德伦, 候伟. 随机波群的模拟 [J]. 海洋学报, 1993, 15(5): 27-35.XU Delun, HOU Wei. Simulation of random wave groups [J]. Acta Oceanologica Sinica, 1993, 15(5): 27-35. (in Chinese)
[10] 俞聿修, 桂满海. 波群的数值模拟和物理模拟 [J]. 大连理工大学学报, 1998, 38(1): 86-91.YU Yuxiu, GUI Manhai. Numerical simulation and physical simulation of sea wave groups [J]. Journal of Dalian University of Technology, 1998, 38(1): 86-91. (in Chinese)
[11] 柳淑学, 包艳, 俞聿修. 多向不规则波群的数值模拟 [J]. 水道港口, 2006, 27(5): 273-278.LIU Shuxue, BAO Yan, YU Yuxiu. Numerical simulation of multidirectional irregular wave groups [J]. Journal of Waterway and Harbour, 2006, 27(5): 273-278. (in Chinese)
[12] 刘思, 柳淑学, 俞聿修. 改进的海浪波包谱 [J]. 水道港口, 2010, 31(4): 229-235.LIU Si, LIU Shuxue, YU Yuxiu. Improved wave envelope spectrum [J]. Journal of Waterway and Harbour, 2010, 31(4): 229-235. (in Chinese)
[13] 俞聿修. 随机波浪及其工程应用 [M].大连: 大连理工大学出版社, 2003.YU Yuxiu. Random Wave and Its Applications to Engineering [M]. Dalian: Dalian University of Technology Press, 2003. (in Chinese)
[14] Goda Y A. A comparative review on the functional forms of directional wave spectrum [J]. Coastal Engineering, 1999, 41(1): 1-20.
[15] Goda Y A. Random Seas and Design of Maritime Structures [M]. Tokyo, Japan: World Scientific Publishing Company, 2000.
[16] 孙忠滨, 柳淑学, 李金宣. 基于改进Boussinesq方程的三角形网格有限元模型 [J]. 海洋工程, 2010, 28: 50-58. SUN Zhongbin, LIU Shuxue, LI Jinxuan. Triangular element FEM model based on modified Boussinesq equations [J]. Ocean Engineering, 2010,28: 50-58. (in Chinese)
[17] 刘思, 柳淑学, 李金宣, 等. 单向不规则波群的实验室模拟和分析 [J]. 水道港口, 2011, 32(5): 305-312.LIU Si, LIU Shuxue, LI Jinxuan, et al. Experimental simulation and analysis of irregular sea wave groups [J]. Journal of Waterway and Harbour, 2011, 32(5): 305-312. (in Chinese)
[18] YU Yuxiu, LIU Shuxue. Study on measurement methods of multi-directional waves by gauge array method [J]. China Ocean Engineering, 1992, 6(2): 233-242.
[19] 杨正已, 左其华, 苏卫东. 波群的实验室模拟和分析 [J]. 海洋工程, 1991, 9(1): 61-67.YANG Zhengyi, ZUN Qihua, SU Weidong. Experimental simulation and analysis of wave groups [J]. Ocean Engineering, 1991, 9(1): 61-67. (in Chinese) null


相关文章:
[1]李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
[2]王春财, 程嘉, 季林红, 路益嘉, 孙钰淳, 林嘉. 基于Delaunay三角形网格的2维DSMC算法实现及应用[J]. 清华大学学报(自然科学版), 2015, 55(10): 1079-1086,1097.
[3]管清亮, 毕大鹏, 吴玉新, 张建胜. 气流床煤加氢气化反应器的数值模拟及流场特性分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1098-1104.
[4]张璜,薄涵亮. 基于Lagrange-Euler方法的多液滴运动模型[J]. 清华大学学报(自然科学版), 2015, 55(1): 105-114.
[5]吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.

相关话题/港口 传播 实验 实验室 物理