1.
Introduction
Electron–phonon coupling manifests in many ways in optical properties, and thus in optical spectroscopy studies of semiconductors. Two commonly observed phenomena, (1) phonon side bands or replicas in luminescence or absorption spectra, and (2) multiple orders of longitudinal optical (LO) phonon Raman lines, are both related to electron–phonon coupling. The first phenomenon may occur in radiative recombination associated with either defect or impurity, which was the primary subject of Huang and Rhys’ 1950 paper[1], or band edge states in an intrinsic semiconductor[2]. The second phenomenon is intrinsic in nature[2, 3], but sensitive to the presence of defects or impurities[2]. Here we will use intrinsic to mean a semiconductor free of defects and impurities. Although these phenomena might appear similar, their mechanisms can be rather different. This brief review intends to explain the differences in terms of underlying physics and to clarify some confusion in the literature.
Huang–Rhys factor S was initially introduced to describe the electron–phonon coupling strength of a localized (defect) center because of lattice relaxation, where lattice relaxation refers to the change in equilibrium atomic positions between the initial and final state involved in the optical transition[1]. For a defect center, the atomic configuration near the defect can change substantially between the ground state and an excited state[4]. However, between two bulk states, one of the conduction band and the other of the valence band, lattice relaxation should be minimal, if any. Because the wave functions of both states are extended, lattice relaxation would indicate one sublattice displacing against another, and thus causing a change in the lattice constant. Thus, one would not expect that exciting a few electrons into the conduction band would induce a change in interatomic bonding in a bulk semiconductor. Therefore, we do not expect the specific lattice relaxation effect described in Huang–Rhys theory to manifest itself in the optical transitions involving only bulk states.
This brief review will discuss two important topics of electron–phonon coupling that are highly relevant to optical spectroscopy studies of semiconductor materials and related nanostructures: (1) the difference between two primary approaches to treat the electron–phonon coupling, and their respective applications; and (2) the relationship between the Huang–Rhys theory[1] and Albrecht's theory for Raman scattering[5], including the inappropriate though common practice of using Huang–Rhys factor S to describe the relative intensity between different LO phonon Raman peaks under resonant excitation.
2.
Two basic approaches to treat electron–phonon coupling in a semiconductor
Suppose that we can calculate the equilibrium state of a crystal and obtain its electronic structure with atoms at their equilibrium lattice sites, as well as the corresponding phonon spectrum. The electrons and phonons are not two independent sub-systems. Lattice vibrations can perturb electronic states, and changes in electronic states may also affect the atomic positions in the crystal, and thus the vibration spectrum. The latter effect is typically negligible unless a defect or an impurity is involved. If the electron and phonon wave functions are
3.
Huang–Rhys theory
3.1
Huang–Rhys theory involving a highly localized state
To facilitate the discussion, we reproduce the key results relevant to the optical transition from a paper of Prof. K. Huang[13] below, with some discussions added.
The total Hamiltonian includes four terms: electronic portion He, phonon portion HL, electron–phonon coupling term HeL, and electron-electromagnetic wave interaction term HeR. Assuming
Under the Born-Oppenheimer or adiabatic approximation, the total wave function ψin(x, Q) can be written as the product of the electron wave function ?i(x,Q) and phonon wave function χin(Q),
${psi _{{ m{in}}}}left( {x,Q} ight){ m{ }} = {phi _i}left( {x,Q} ight){chi _{{ m{in}}}}left( Q ight),$ | (1) |
where x is the electron coordinate, and Q represents the normal coordinates for the vibration modes. We attempt to separate the problem of solving ψin(x, Q) into two equations. The electron wave function is the solution to the equation below:
$({H_{ m{e}}} + {H_{{ m{eL}}}}){phi _i}left( {x,Q} ight) = {W_i}left( Q ight){phi _i}left( {x,Q} ight).$ | (2) |
Because of the presence of HeL, the electronic eigenvalue Wi(Q) is a function of Q. Wi(Q) also becomes an additional potential term in the equation for the vibrational part:
$[{H_{ m{L}}} + {W_i}left( Q ight)]{chi _{{ m{in}}}}left( Q ight) = {E_{{ m{in}}}}{chi _{{ m{in}}}}left( Q ight),$ | (3) |
where Ein is the total eigenvalue. Under the harmonic approximation, HL can be written as
${H_{ m{L}}} = mathop sum nolimits_{ q} frac{1}{2}left( { -hbar {{}^2}frac{{{partial ^2}}}{{partial Q_{ q}^2}} + omega _{ q}^2Q_{ q}^2} ight),$ | (4) |
where Qq represents a normal coordinate with a wave vector q and frequency ωq.
Under the linear coupling approximation, and for simplicity, only considering one vibration mode with a vibration frequency ω0, we may write
${H_{{ m{eL}}}} = u(x)Q.$ | (5) |
The exact function form of u(x) depends on the type of electron–phonon coupling and the wave vector of the phonon mode. With this approximation, the first order perturbation solution of Eq. (2) (i.e., using the zeroth-order wave function
${W_i}left( Q ight) = W_i^0 + omega _0^2{varDelta _{{i}}}Q,$ | (6) |
where
${varDelta _i} = 1/omega _0^2leftlangle {phi _i^0left( x ight)left| {uleft( x ight)} ight|phi _i^0left( x ight)} ight angle ,$ | (7) |
which can be understood as the electron–phonon coupling induced shift in the equilibrium position for the electronic state ?i. The solution of Eq, (3) is then
${E_{{ m{in}}}} = {W_i} + (n + frac{1}{2})hbar {omega _0},$ | (8) |
where
${W_i} = W_i^0 - frac{1}{2}omega _0^2varDelta _i^2.$ | (9) |
We can understand Wi as the electronic energy that has been lowered by the electron–phonon coupling. Strictly speaking, it is the energy lowering of the coupled system, but because within the approximations the phonon frequency remains the same except for a shift in the equilibrium position, we may interpret Wi as the electronic energy. Note that we do not explicitly solve Eq. (2) to get the electronic eigen-state.
If it is a bulk-like mode, we should change Δi to
It is of some interest to discuss the meaning of Δi. Is this an experimentally measurable physical parameter? How does it manifest in a self-consistent first-principles electronic structure calculation? We first note that Δi can be understood as a static lattice displacement near a defect site relative to a chosen reference configuration Q0 (e.g., the surrounding atoms are at some idealistic atomic positions) as the result of the electron–phonon coupling. Δi can in-principle be determined by comparing the idealistic atomic configuration Q0 with the measured ones. However, it is impractical to separate
Let us now consider an optical transition in which the electron goes from an initial state ?i(x, Qi) to a final state ?f(x, Qf). From Eq. (9), the electronic transition energy taking into account the lattice relaxation will be
${E_{fi}} = {W_f}left( {{Q_f}} ight) - {W_i}left( {{Q_i}} ight) = W_f^0 - W_i^0 - frac{1}{2}omega_0^2 left( {varDelta _f^2 - varDelta _i^2} ight).$ | (10) |
This transition energy corresponds to the zero-phonon energy in the optical transition.
Perhaps the most important consequence of the lattice relaxation is that the initial and final state vibrational wave functions are no longer orthonormal to each other, i.e., <χin(Qi)|χfn'(Qf)> ≠ δn,n’. Multiple phonon transitions will emerge from evaluating this overlapping integration that depends only on the relative lattice displacement Δfi = Δf – Δi. Huang–Rhys factor is defined as
${S_{fi}} = frac{{1/2omega _0^2varDelta _{fi}^2}}{{hbar {omega _0}}} = frac{{{omega _0}varDelta _{fi}^2}}{{2hbar }},tag{11a}$ | (11a) |
or for N dispersion-less bulk modes,
${S_{fi}} = frac{1}{N}mathop sum nolimits_q frac{{1/2omega _0^2varDelta _{fiq}^2}}{{hbar {omega _0}}} = frac{1}{N}mathop sum nolimits_q frac{{{omega _0}}}{{2hbar }}varDelta _{fiq}^2.tag{11b}$ | (11b) |
Sfi can be interpreted as the ratio of the ground state energy of a harmonic oscillator with a displacement magnitude of Δfi to the phonon energy
$begin{split}{E_{fi}} & = {W_f}left( {{Q_i}} ight) - {W_i}left( {{Q_i}} ight) - frac{1}{2}omega_0^2 varDelta _{fi}^2 &= {W_f}left( {{Q_i}} ight) - {W_i}left( {{Q_i}} ight) - mathop sum nolimits_q {S_{fiq}}hbar {omega _q}.end{split}$ | (12) |
It is now easier to relate the Huang–Rhys factor Eq. (11) to the transition energy Eq. (12).
The transition rate between the initial and final state can be written as
$Tleft( E ight) = frac{{2{text{π}} }}{hbar }left| {{psi _{fn'}}left( {x,{ m{}}Q} ight)} ight|{H_{ m{eR}}}{left| {{psi _{in}}left( {x,{ m{}}Q} ight) > } ight|^2}delta left[ {E - left( {{E_{fn'}} - {E_{in}}} ight)} ight].$ | (13) |
Under Franck-Condon approximation (i.e., the atomic configuration does not change, when an electronic transition occurs), the transition intensity is determined by the transition matrix element below:
${M_{{{fi}}}}(Q) = leftlangle {{phi _{{f}}}(x,Q)|{H_{{ m{eR}}}}|{phi _{{i}}}(x,Q)} ight angleapprox M_{fi}^0,$ | (14) |
where
To evaluate the overlapping integration of the phonon wave function <χin|χfn’>, we assume T = 0 K, and thus n = 0. Assuming there are N normal modes, the probability of emitting p = n' – n phonons is the sum of all possible ways of selecting p normal modes and making each of them emit one phonon. The final result for the transition rate of emitting p phonons is
$T(E = {E_{fi}} - p{{{hbar }}}{omega _0}) = frac{{2{text{π}} }}{hbar }{left| {M_{fi}^0} ight|^2}frac{{{S^p}}}{{p!}}{e^{ - s}}.$ | (15) |
In this simplistic situation (T = 0 and dispersion-less in phonon frequency), optical transitions occur at energy
Note that although S factors appear in Eq. (12), this transition energy is in fact the zero-phonon transition energy Ezp that is the energy difference between the excited and ground state at their respective equilibrium positions, taking into account the lattice relaxation effects of all vibration modes (which is why the summation is included). The transition energy in Eq. (15) with the participation of a specific phonon mode ωs will be
m{zp}}}} - p{hbar }{omega _s}$
Fig. 1 is a configuration coordinate model showing lattice relaxation parameters Δi, Δf, and Δfi, different energy levels, and transition energies. Under F-C approximation, the excitation energy required for the ?i → ?f transition is
ight) - {W_i}left( {{Q_i}}
ight)$
m{p}}}} = {W_f}left( {{Q_f}}
ight) -$
ight)$
onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2019/9/PIC/19080014-1.jpg'"
class="figure_img" id="Figure1"/>
Download
Larger image
PowerPoint slide
Figure1.
(Color online) Illustration of a configuration coordinate model. (a) Energy levels before and after taking into account the lattice relaxation. (b) Transition energies in relaxed configuration coordinates.
In calculating the transition matrix element Mfi(Q) from Eq. (14), we have neglected the potential effect of HeL in the electronic states or used the zeroth-order electronic wave functions. However, if we treat HeL as a perturbation in the electronic wave function, Mfi(Q) itself can lead to multiple phonon transitions. Applying the first order perturbation of HeL to the electronic wave functions, i.e., keeping the linear terms like
ight
angle $
m{phi}} _{nk}^0$
ight
angle =$
ight
angle $
ight
angle $
3.2
Huang–Rhys factor for bulk states
It was mentioned in the Introduction that lattice relaxation is not applicable to the transition between two bulk states. Mathematically, one can see that for a bulk state |nk > the matrix element Δk(q) = <nk|u(q)|nk> ∝ δq,0; and for q = 0, <nk|u(q)|nk> ∝ <nk|nk>, which is essentially the normalization condition and will be the same for all |nk> states. Thus, the lattice relaxation is negligible for a Bloch state[16], and similarly, the relative lattice relaxation between any two bulk states has Δk1,k2(q) = Δk1(q) – Δk2(q) = 0. This conclusion is expected to be valid also for typical nanostructures where the electronic wave function of the quantum confined state can be approximated by a bulk state modulated by an envelope function that is much larger than the unit cell size.
For a free exciton, the lattice relaxation should also normally be zero. We may use a Slater determinant Ψ0 to describe the ground state of the system, where all k states are occupied by the valence electrons. For simplicity, we consider a free exciton state in a direct band gap semiconductor with kex = 0. The wave function of the excitonic state Ψex can be expressed as a superposition of excited states Ψvk,ck with coefficients Ak where each Ψvk,ck is a Slater determinant with one valence band state |vk> being replaced by a conduction band state |ck>, meaning that one electron has been excited to the conduction band[9]:
${varPsi _{{ m{ex}}}} = mathop sum nolimits_{{k}} {A_k}{psi _{vk,ck}}.$ | (16) |
For a large Wannier exciton, Ak will be the Fourier components of the exciton envelop function φ(r = re – rh). Including the electron–phonon interaction for all electrons as
m{eL}}}}left( {{q}}
ight) = mathop sum nolimits_n {H_{
m eL}}left( {{q}}
ight)$
m{ex}}}}left( {{q}}
ight) = leftlangle { {varPsi _{{
m{ex}}}}|{{{H}}_{{
m{eL}}}}|{varPsi _{{
m{ex}}}}}
ight
angle - leftlangle { {varPsi _0}|{{{H}}_{{
m{eL}}}}|{varPsi _0}}
ight
angle $
${varDelta _{{ m{ex}}}}left( {{q}} ight) = frac{1}{{omega _0^2}}mathop sum nolimits_k {left| {{A_k}} ight|^2}left(leftlangle {ckleft| {{u_q}} ight|ck} ight angle - leftlangle {vkleft| {{u_q}} ight|vk} ight angle ight).$ | (17) |
As
ight) = dfrac{1}{{omega _0^2}}left(leftlangle {ckleft| {{u_q}}
ight|ck}
ight
angle - leftlangle {vkleft| {{u_q}}
ight|vk}
ight
angle
ight) = 0$
ight|^2}=1$
m{ex}}}}left( {{q}}
ight) approx {varDelta _{{{ck}}}}_{{bf{0}},{{vk}}{bf{0}}}left( {{q}}
ight) approx 0$
${varDelta _{{ m{ex}}}} = frac{1}{{omega _0^2}}left( {leftlangle {{phi _i}left| {{u_q}} ight|{phi _i}} ight angle - mathop sum limits_{{k}} {{left| {{A_k}} ight|}^2}leftlangle {vkleft| {{u_q}} ight|vk} ight angle } ight),$ | (18) |
where ?i is the wave function of the impurity bound state, and Ak the k component of the wave function of the hole bound state. In this case,
ight|{phi _i}}
ight
angle $
In the literature, there are some theories that imply or claim non-zero lattice relaxation or Huang–Rhys factor for a free or bulk exciton, either assuming Δck,vk(q) ≠ 0[18] or calculating Δ(q) with the exciton envelop function (for the electron–hole relative motion)[19, 20]. The model of Ref. [19] yielded Sp = 0.38–1.4 for CdSe and 0.008 for GaAs for the polar (Fr?hlich) interaction in the bulk crystal. The theory was further used to calculate the size dependence of Sp in nanostructures[19, 21]. The other model calculated the lattice relaxation, and thus the Huang Rhys factor for a bulk exciton by assuming a highly localized hole and an electron in a hydrogentic state described by the exciton envelop function[20]:
${varDelta ^2} = frac{{{e^2}}}{a}{left( {frac{{24}}{{text{π}} }} ight)^{1/3}}frac{{left( {varepsilon _infty ^{ - 1} - varepsilon _0^{ - 1}} ight)}}{{{omega _{ m LO}}}}frac{1}{w}mathop int nolimits_0^w frac{{{x^4}{{left( {2 + {x^2}} ight)}^2}}}{{{{left( {1 + {x^2}} ight)}^4}}}{ m{d}}x,$ | (19) |
where
3.3
An example of applying Huang–Rhys theory
As example of an application of Huang–Rhys theory, Fig. 2 shows a PL spectrum for radiative recombination of an exciton bound to an isolated nitrogen impurity in a lightly doped GaP:N. This is one of the most well-studied impurity systems, and the best studied isoelectronic impurity system in semiconductors. This is a case of relatively weak or moderately strong electron–phonon coupling with S factors smaller than 1 for all phonon modes, where the LO(Γ) sideband is due to the Fr?hlich interaction while the X sideband as well as the TA and LA sidebands are due to the deformation potential interaction. This has been used as an example to illustrate that the CC and MC models might both be able to yield multiple phonon side bands, but only the CC model can give rise to S factors that are quantitatively consistent with experimental results[6]. A Koster-Slater on-site potential model (a likely oversimplified theory)[25], was used to calculate the electronic bound state of the N impurity. Incidentally or non-incidentally, it was found that when the electron binding energy Ee was around 6 meV, the calculations yielded respectively the correct exciton binding energy of the bound exciton[26] and the strengths of the exciton–phonon coupling for both deformation and polar interaction[6]. A density-functional theory based on a local density approximation (plus charge patching) yielded an Ee of 8 meV[27], whereas it is known that Ee < 11 meV from the experimentally measured difference between the free-exciton and bound-exciton transition energy. In general, a quantitative calculation of S factors is traditionally non-trivial without making many approximations. It has recently become more feasible with the development of a more sophisticated theoretical approach[28]. With the availability of clean and unambiguous experimental data and a solid understanding of the underlying physics, exciton-phonon coupling in GaP:N may serve as a testbed for a new computational method or technique.
onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2019/9/PIC/19080014-2.jpg'"
class="figure_img" id="Figure2"/>
Download
Larger image
PowerPoint slide
Figure2.
(Color online) Photoluminescence spectrum of the isolated nitrogen bound exciton in GaP:N (4.2 K, [N] = 1016 cm-3, A line at 2.317 eV)[6].
4.
Albrecht’s theory for Raman scattering
Huang–Rhys theory applies the first-order perturbation of HeR to an electronic transition between two coupled states approximated by
ight){chi _{n'}}({Q_0} + $
We offer a concise summary of Albrecht’s theory below, attempting to use the same conventions as adopted in Huang–Rhys theory but using as closely as possible the same symbols used in Albrecht’s original paper. For the transition between two states of the molecular system |m > = |ψm> → |n > = |ψn>, the polarizability αnm of Eq. (2) in the original paper is reproduced below (for simplicity, we neglect the light polarization index):
${alpha _{nm}} = frac{1}{hbar }mathop sum nolimits_r left(frac{{{M_{nr}}{M_{rm}}}}{{{omega _{rm}} - {omega _0}}} + frac{{{M_{rm}}{M_{nr}}}}{{{omega _{rn}} + {omega _0}}} ight),$ | (20) |
where
${alpha _{gj,gi}} = frac{1}{hbar }mathop sum nolimits_{ev} frac{{{M_{gj,ev}}{M_{ev,gi}}}}{{{omega _{ev,gi}} - {omega _0}}}.$ | (21) |
Under the Born-Oppenheimer approximation, the relevant molecular states can be expressed as
${M_{rm}} = {M_{ev,gi}} = leftlangle {{chi _{ev}}left| {{M_{e,g}}left( Q ight)} ight|{chi _{gi}}} ight angle ,$ | (22) |
with the electronic transition matrix element of
${M_{e,g}}left( Q ight) = leftlangle {{phi _e}left| {{H_{ m eR}}} ight|{phi _g}} ight angle .$ | (23) |
Now keeping the HeL induced electronic state mixing to the first order, we have
${M_{e,g}}left( Q ight) = M_{e,g}^0 + mathop sum nolimits_s {lambda _{e,s}}left( Q ight)M_{s,g}^0,$ | (24) |
where
ight)$
${M_{ev,gi}} = M_{e,g}^0leftlangle {{chi _{ev}}|{chi _{gi}}} ight angle + sumnolimits_s {M_{s,g}^0} langle {chi _{ev}}|{lambda _{e,s}}left( Q ight)left| {{chi _{gi}}} ight angle .$ | (25) |
After substituting Eq. (25) into Eq. (21), the polarizability is given below with two terms (the C term in Albrecht’s paper associated with the second term in Eq. (20) no longer exists):
${alpha _{gi,gj}} = A + B,$ | (25) |
where
$A = frac{1}{hbar }sumnolimits_{ev} {frac{{|M_{e,g}^0{|^2}leftlangle {{chi _{gj}}|{chi _{ev}}} ight angle leftlangle {{chi _{ev}}|{chi _{gi}}} ight angle }}{{{omega _{ev,gi}} - {omega _0}}}} ,$ | (26) |
$B = frac{1}{hbar }sumnolimits_{ev} {sumnolimits_s {frac{{M_{g,e}^0M_{s,g}^0leftlangle {{chi _{gj}}} ight.left| {left. {{chi _{ev}}} ight angle leftlangle {{chi _{ev}}} ight.} ight|{lambda _{e,s}}|left. {{chi _{gi}}} ight angle + M_{e,g}^0M_{s,e}^0leftlangle {{chi _{ev}}} ight.left| {left. {{chi _{gi}}} ight angle leftlangle {{chi _{gj}}} ight.} ight|{lambda _{s,g}}|left. {{chi _{ev}}} ight angle }}{{{omega _{ev,gi}} - {omega _0}}}} } .$ | (27) |
In the case of
ight
angle langle {chi _{ev}}|left. {{chi _{gi}}}
ight
angle =$
ight
angle = {delta _{j,i}}$
ight
angle } leftlangle {{chi _{ev}}}
ight. = 1$
ight|left. {{chi _{gi}}}
ight
angle = {delta _{vi}}$
Under a near resonant condition, i.e.,
$A''' = frac{1}{hbar }mathop sum nolimits_v frac{{|M_{e,g}^0{|^2}leftlangle {{chi _{gj}}} ight|left. {{chi _{ev}}} ight angle leftlangle {{chi _{ev}}} ight|left. {{chi _{gi}}} ight angle }}{{{omega _{ev,gi}} - {omega _0} + i{gamma _e}}},$ | (28) |
where γe is a damping constant for electronic state ?e. Now the summation over the phonon modes can in-principle include those not contributing to the Raman scattering of interest (e.g., there might be more than one branch of LO phonons)[29], but normally people only consider the specific phonon mode that is measured. The corresponding B term under resonance is referred to as B''', which is not explicitly given here.
Although the original theory was developed for Raman scattering of molecules, it has often been adopted for describing (resonant) Raman scattering in solids. For the later purpose, we further simplify A''' to a familiar form that is typically used in the literature to describe the resonant Raman scattering of LO phonons in bulk and nanoscale semiconductors. By letting
ight
angle !=! left|0
ight
angle$
ight
angle !=! left| n
ight
angle, ;left| {{chi _{ev}}}
ight
angle = left| m
ight
angle $
m LO}}$
$A = |M_{e,g}^0{|^2}mathop sum nolimits_m frac{{leftlangle {nleft| m ight angle leftlangle m ight|0} ight angle }}{{{E_{e,i}} + mhbar {omega _{ m LO}} - {omega _0} + i{gamma _{ m e}}}}.$ | (39) |
Albrecht stated that even under the resonance condition, “it is reasonable to expect that B''' is still responsible for most of the Raman effect while A''' leads primarily to Rayleigh scattering”[5]. It was also pointed out by Cardona that “for solids and large molecules, … the vibrational functions of initial and intermediate states are orthonomal and no Raman scattering usually results from the A-terms”[3]. This is consistent with the discussions given in the previous section that there should be no lattice relaxation between bulk states. Therefore, the A''' term cannot yield the multi-phonon peaks of resonant Raman scattering in either bulk or typical nanostructured semiconductors, unless the nanocrystals are extremely small or the resonant state is a highly localized defect/impurity state. Unfortunately, theories like Eq. (30) have often been used to describe the resonant Raman phenomenon in both bulk and nanoscale semiconductors[20, 22–24, 30, 31], which is ultimately based on the belief that there is considerable lattice relaxation, thus <m|0> ≠ 0 even in the bulk. This is in turn based on the model of Eq. (19) that predicts a large lattice relaxation for a bulk exciton[20]. There is one exception indicating that Huang–Rhys factor was in fact very small, on the order of 10–3, in CdSe nanocrystals, and that the experimental observed resonant phenomenon (although not quantitatively the relative intensities of the nLO peaks) could be explained by a theory without resorting to lattice relaxation[32]. In fact, there are other theories in the literature that have been developed for modeling the resonant Raman phenomena in bulk materials, such as one involving different excitonic states as intermediate states, which may explain the intrinsic nature of the very weal 1LO peak in bulk ZnTe and CdSe[2]. With this understanding, the relative enhancement of the 1LO peak to the 2LO peak implies the degradation of material crystallinity due to increase in bulk or surface defects, rather than a reduction in Huang–Rhys factor by using the A''' based model. As an example, Fig. 3 compares two Raman spectra of ZnTe excited with a 532 nm laser (close to its bandgap) between a high quality single crystalline sample and a defective thin-film grown on a Si (211) substrate, where in the latter the 1LO Raman peak is drastically enhanced relative to the 2LO peak (the I2LO/I1LO ratio changes from around 10 to 0.7)[33]. Therefore, it is important to obtain the intrinsic result, which might not be trivial, to validate a theory. A secondary issue found in the literature is that, in Eq. (30), the index m for the intermediate states in the denominator was sometimes replaced by n for the final state[22, 23, 30], which incorrectly simplified the result to
m LO}} - {omega _0} + i{gamma _{
m e}})leftlangle n
ight.|left. 0
ight
angle $
ight
angle$
ight
angle$
angle = delta_{n ,0}$
onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2019/9/PIC/19080014-3.jpg'"
class="figure_img" id="Figure3"/>
Download
Larger image
PowerPoint slide
Figure3.
(Color online) Resonant Raman spectra of ZnTe measured by a 532 nm laser at room temperature for one high quality single crystal sample and a thin-film sample grown on a Si (211) substrate. Strong PL background of the single crystal sample has been removed.
When lattice relaxation does exist, such as when the intermediate state is a highly localized state, the A term can in principle induce multi-phonon transitions. Resonant Raman studies on isoelectronic impurity bound exciton states of isolated N and NN pairs in GaP:N were conducted[34, 35], but no multi-phonon scattering was reported. Under incoming resonance, the 1LO Raman signal was much weaker than the PL signal of the LO sideband, which makes it impractical to see the effect if it is indeed present. However, it has been found that when the excitation energy is in resonant with a bulk critical point in a semiconductor alloy or a semiconductor with heavily doped isoelectronic impurities, 2LO and associated Raman peaks are strongly enhanced[14], and even nLO peaks can be observed[36]. In these cases, 1LO peak tends to be the strongest. The effect has been explained as disordering induced lattice relaxation[14, 17]. Even a formalism resembling Eq. (30) was used[14], although the applicability was not well justified.
In short, A''' is not appropriate to be used as a framework to explain resonant Raman scattering and the size dependence of Huang–Rhys factor. Lattice relaxation can in-principle be involved in resonant Raman scattering, but typically it is expected to be rather small and involved in a very subtle manner mostly through the B''' term like mechanisms. In reality, the changes in the relative intensity of nLO resonant Raman peaks are mostly extrinsic in nature rather than the quantum confinement induced change in electron–phonon coupling.
5.
Summary
We have provided a concise review of Huang–Rhys theory applied to optical transitions involving localized electronic states in semiconductors and Albrecht’s theory for Raman scattering originally developed for molecules but also frequently used in solids.
There are two commonly adopted approaches to dealing with electron–phonon coupling in optical transitions. One approach treats the coupling in the vibrational states, as in Huang–Rhys theory, which leads to static lattice relaxation or displacement as well as multi-phonon transitions in emission and absorption spectra involving highly localized defect or impurity states where a Huang–Rhys factor S can be used to describe the coupling strength. The other approach treats the coupling in the electronic states, such as in the theory of an interband optical transition in an indirect bandgap semiconductor where the dynamic lattice displacement is relevant. For bulk single particle states as well as free exciton states, the lattice relaxation effect should be practically zero. The connection between a self-consistent first-principles calculation and Huang–Rhys model is also discussed.
Huang–Rhys theory is a first-order perturbative treatment of electron-electromagnetic field coupling, and it is intended for applications in absorption and PL spectroscopy. Albrecht’s theory is intended for Raman scattering, and in its most general form it is a second-order perturbative treatment of the electron-electromagnetic field coupling that may take into account both the electronic and vibration intermediate states and include the electron–phonon coupling in both the electronic and vibrational part. The A term in Albrecht’s theory is fundamentally related to Rayleigh scattering, although with lattice relaxation it could contribute to multi-phonon scattering. However, in reality, if only bulk states are involved, the lattice relaxation effect should be zero. Therefore, it normally cannot be used to describe the resonant Raman scattering of LO phonons in bulk and nanostructured semiconductors. The B term, involving the electron–phonon coupling induced mixing of electronic states, is similar to the conventional Raman scattering theory. To a large extent, when applied to a solid state, the lattice relaxation effects in Albrecht’s theory can be neglected. However, to properly explain the experimental results of resonant Raman scattering, some excitonic states are likely required to be included as the intermediate electronic states.
Acknowledgments
It is a great honor to be invited to contribute this article to the special issue of the Journal of Semiconductors in celebrating Prof. Kun Huang’s 100th birthday anniversary. I would like to take this opportunity to express my sincere gratitude to Prof. Jiansheng Zheng of Xiamen University and Prof. Michael D. Sturge of Dartmouth College for their guidance and support when I was a graduate student in their groups where I had the opportunity to study the effects of electron–phonon coupling in nitrogen bound excitons in GaP. I am very grateful to many other collaborators at Xiamen University, Institute of Semiconductors, Dartmouth College, and National Renewable Energy Laboratory, in particular to Prof. Weikun Ge for his longtime friendship and collaboration on the subject. I would also like to thank my group members at UNC-Charlotte, particularly Dr. Yingyan Yi and Dr. Jason Marmon, for their contributions in studying resonant Raman effects in II–VI compounds and their nanostructures.