北京石油化工学院环境工程系, 北京 102617
Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
利用电阻加热(ERH)和土壤气相提取(SVE)耦合技术,针对有机污染土壤,采用COMSOL软件模拟方法对场地加热电极的布置进行优化,以温度为探针,对比物理场种类、电极间距、电极的边界距离、电极个数、耦合物理场边界等因素对土壤温度的影响。结果表明,在固体传热和电磁热的耦合场下的加热效果比单独物理场更好,40 d后温度可达201.20 ℃。电极间距最优为3 m,升温104.71 ℃。当边界距离为0.5 m时,边界土层温度能够达到ERH工程要求的100.15~220.15 ℃。7电极排布相比其他排布方式的升温速率更高,平均温度为153 ℃,加热更均匀。本研究可为有机物污染土壤场地修复的工程设计提供参数。
In this paper, ERH and SVE coupling technology were used to optimize the arrangement of heating electrode in the field against organic-contaminated soil, and the temperature was used as the probe. The effects of physical field types, electrode spacing, distance between electrodes, number of electrodes and boundary of coupled physical field on soil temperature were compared. The results showed that the heating effect in the coupling field of solid heat transfer and electromagnetic heat was better than that in the single physical field, and the temperature could reach 201.20 ℃ after 40 days. The optimal electrode spacing was 3 m and the temperature rose to 104.71 ℃. When the distance between electrodes was 0.5 m, the boundary soil temperature could reach 100.15~220.15 ℃. The average temperature of the seven-electrode array was 153 ℃ and the heating rate was higher than that of other arrays. This study can provide parameters for the engineering design of remediation of organic contaminated soil sites.
.
Distributed potential and temperature under different physical fields
Temperature isosurface map with different spacing
Effect of boundary distance of electrode on soil ERH process
Temperature distributions under different number of electrodes
Probe diagram under the boundary of cross-electrode
Effects of field boundary on soil ERH process
[1] | 迟克宇, 李传维, 籍龙杰, 等. 原位电热脱附技术在某有机污染场地修复中的应用效果[J]. 环境工程学报, 2019, 13(9): 2049-2059. doi: 10.12030/j.cjee.201905110 |
[2] | 李娇, 吴劲, 蒋进元, 等. 近十年土壤污染物源解析研究综述[J]. 土壤通报, 2018, 49(1): 232-242. |
[3] | 刘昊, 张峰, 马烈. 有机污染场地原位热修复: 技术与应用[J]. 工程建设与设计, 2017(16): 93-98. |
[4] | 张学良, 廖朋辉, 李群, 等. 复杂有机物污染地块原位热脱附修复技术的研究[J]. 土壤通报, 2018, 49(4): 993-1000. |
[5] | ZUTPHEN M V, HERON G, ENFIELD C G, et al. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil[EB/OL]. [2021-01-05]. https://www.icevirtuallibrary.com/doi/abs/10.1680/cs98v1.26759.0061. |
[6] | 李鹏, 廖晓勇, 阎秀兰, 等. 热强化气相抽提对不同质地土壤中苯去除的影响[J]. 环境科学, 2014, 35(10): 3888-3895. |
[7] | 岳昌盛, 刘诗诚, 吴朝昀, 等. 焦化污染土壤低温热解析实验研究[J]. 环境工程, 2018, 36(5): 193-197. |
[8] | AGARWAL T, KHILLARE P S, SHRIDHAR V, et al. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India[J]. Journal of Hazardous Materials, 2009, 163(2): 1033-1039. |
[9] | JING L, MA G, FANG H, et al. Polycyclic aromatic hydrocarbon concentrations in urban soils representing different land use categories in Shanghai[J]. Environmental Earth Sciences, 2011, 62(1): 33-42. doi: 10.1007/s12665-010-0493-7 |
[10] | 康绍果, 李书鹏, 范云. 污染地块原位加热处理技术研究现状与发展趋势[J]. 化工进展, 2017, 36(7): 2621-2631. |
[11] | HAN Z Y, JIAO W T, TIAN Y, et al. Lab- scale removal of PAHs in contaminated soil using electrical resistance heating: Removal efficiency and alteration of soil properties[J]. Chemosphere, 2020, 239: 124496. doi: 10.1016/j.chemosphere.2019.124496 |
[12] | FU R B, WEN D D, XIA X Q, et al. Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes[J]. Chemical Engineering Journal, 2017, 316: 601-608. doi: 10.1016/j.cej.2017.01.092 |
[13] | 杨康, 韩雪, 王亚飞. 三种热源下轻油组分脱附规律的研究[J]. 北京石油化工学院学报, 2020, 28(4): 49-54. |
[14] | 田垚. 电阻加热耦合化学氧化对场地多环芳烃污染土壤的修复效果研究[D]. 太原: 山西大学, 2020. |
[15] | 焦会青, 盛钰, 赵成义, 等. 基于COMSOL软件的绿洲盐渍化土壤中多离子耦合运移模型构建[J]. 农业工程学报, 2018, 34(15): 100-107. doi: 10.11975/j.issn.1002-6819.2018.15.013 |
[16] | 梁爽. 饱和土壤冻胀特性的实验及模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
[17] | 张明礼, 郭宗云, 韩晓斌, 等. 基于COMSOL Multiphysics数学模块的冻土水热耦合分析[J]. 科学技术与工程, 2018, 18(33): 7-12. doi: 10.3969/j.issn.1671-1815.2018.33.002 |
[18] | 门利利. 土体导热系数经验模型研究及其应用[D]. 西安: 西安理工大学, 2020. |
[19] | 徐国想. 复杂通道中的传热强化问题研究[M]. 南京: 南京大学出版社, 2018. |
[20] | Santa Susana Field Laboratory. Draft white paper on thermal remediation technologies for treatment of chlorinated solvents[R]. California: Santa Susana Field Laboratory, 2017. |
[21] | 侯星浩, 王春华. 电极参数对石墨化电炉热电场的影响[J]. 辽宁石油化工大学学报, 2020, 40(6): 72-77. |
[22] | 李东南. 土壤含水量和电导率的多功能传感器的研制[D]. 哈尔滨: 哈尔滨工业大学, 2012. |
[23] | 李书鹏, 焦文涛, 李鸿炫, 等. 燃气热脱附技术修复有机污染场地研究与应用进展[J]. 环境工程学报, 2019, 13(9): 2037-2048. doi: 10.12030/j.cjee.201905108 |
[24] | 杨玉洁, 王春雨, 沙雪华, 等. 烃类污染土壤热强化气相抽提技术的脱附动力学[J]. 环境工程学报, 2019, 13(10): 2328-2335. doi: 10.12030/j.cjee.201905119 |
[25] | 钟林. 应用于土壤修复的原位电辐射加热技术研究[D]. 大连: 大连海事大学, 2019. |
[26] | EPA U S. In Situ Thermal Treatment Technologies: Lessons Learned[M]. Office of Land and Environmental Protection Emergency Management Agency (5102G), Washington D. C., 2014. |
[27] | 王宜庆. 基于原位电热导的粉质黏土高温处理应用研究[D]. 大连: 大连海事大学, 2020. |
[28] | 田垚, 杨永刚, 韩自玉, 等. 电阻加热条件优化及其对污染土壤中苯并(a)芘的去除[J]. 环境工程学报, 2019, 13(10): 2336-2346. doi: 10.12030/j.cjee.201905176 |
[29] | 葛松, 孟宪荣, 许伟, 等. 原位电阻热脱附土壤升温机制及影响因素[J]. 环境科学, 2020, 41(8): 3822-3828. |
[30] | 董智东. 电磁感应加热系统的多物理场耦合分析与优化设计[D]. 杭州: 浙江大学, 2019. |