清华大学环境学院,环境模拟与污染控制国家重点联合实验室,北京 100084
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
富集培养氨氧化细菌(AOB)可为污水处理工艺提高氨氮氧化速率、促进亚硝酸盐积累提供物质基础。在(20±2) ℃下,采用底物流加-间歇运行方式进行氨氧化细菌富集培养,重点考察了游离氨(FA)、游离亚硝酸(FNA)、溶解氧(DO)等因素的影响,并对富集前后活性污泥样品中的AOB进行了定性定量分析。结果表明:第15天左右AOB增殖进入稳定生长期,比氨氮氧化速率由接种时的4.45 mg·(g·h)
;通过pH、底物流加速率和实际反应速率关系的联合控制,可以实现整个反应过程中FA和FNA在预期范围内波动;即使在极低的DO条件下,高纯度的AOB也可进行氨氮氧化。高通量测序结果表明,体系内
,AOB成为活性污泥中的优势菌。本研究结果可为常温条件下快速富集AOB提供参考。
The enriched ammonia-oxidizing bacteria (AOB) was added into wastewater treatment systems, which could provide the foundation for promoting the ammonia oxidation and nitrite accumulation. AOB was enriched in a sequencing batch reactor (SBR) with continuous feeding of ammonia at the temperature of (20±2) °C, and the effects of free ammonia (FA), free nitrous acid (FNA) and dissolved oxygen (DO) were evaluated, and the identification and quantification analysis of AOB was also performed in the sludge samples before and after the enrichment. The results indicated that the AOB reached the growth stability period around day 15, and the specific ammonia oxidation rate increased from 4.45 mg·(g·h)
. The expected FA and FNA concentrations could be controlled systematically with the regulation on pH and the relationship between the substrate continuous feeding rate and the real reaction rate. Even at very low DO conditions, ammonia could be oxidized by AOB with high ratio. High-throughput sequencing demonstrated that AOB affiliated to
was highly enriched, and increased from 0.23% to 54.18%. The nitrite-oxidizing bacteria (NOB) growth was inhibited, and only remained 0.12% at the end of cultivation. The copy number of gene
during the enrichment period by quantitative real-time fluorescence polymerase chain reaction (qPCR), and AOB became the predominated bacteria in the cultivated sludge. This work can guide rapid enrichment of AOB at normal temperature.
.
Schematic diagram of the fermenter
Regulation on FA and FNA concentrations at low DO conditions
AOB富集培养期间比氨氮氧化速率和亚硝酸盐积累率
Specific ammonia oxidation rate and nitrite accumulation ratio during the AOB enrichment period
Effects of DO concentrations on the ammonia oxidation rate
Results of gene sequencing at the genus level
Microbial morphology analysis by scanning electron microscopy
[1] | HOSSEINLOU D, SARTAJ M, DELATOLLA R. Simultaneous anaerobic oxidation/partial nitrification-denitrification for cost-effective and efficient removal of organic carbon and nitrogen from highly polluted streams[J]. Environmental Technology, 2019, 40(16): 2114-2126. doi: 10.1080/09593330.2018.1438522 |
[2] | RUIZ G, JEISON D, CHAMY R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Water Research, 2003, 37(6): 1371-1377. doi: 10.1016/S0043-1354(02)00475-X |
[3] | 李培根, 王宇佳, 胡筱敏. 低DO与化学控制相结合的半亚硝化运行[J]. 环境工程学报, 2017, 11(4): 2170-2176. doi: 10.12030/j.cjee.201601050 |
[4] | ZHENG Z M, HUANG S, BIAN W, et al. Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration[J]. Bioresource Technology, 2019, 283: 213-220. doi: 10.1016/j.biortech.2019.01.148 |
[5] | SAUDER L A, ALBERTSEN M, ENGEL K, et al. Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system[J]. ISME Journal, 2017, 11(5): 1142-1157. doi: 10.1038/ismej.2016.192 |
[6] | DURAN U, VAL DEL RIO A, CAMPOS J L, et al. Enhanced ammonia removal at room temperature by pH controlled partial nitrification and subsequent anaerobic ammonium oxidation[J]. Environmental Technology, 2014, 35(4): 383-390. doi: 10.1080/09593330.2013.829110 |
[7] | YAN J, HU Y Y. Partial nitrification to nitrite for treating ammonium-rich organic wastewater by immobilized biomass system[J]. Bioresource Technology, 2009, 100(8): 2341-2347. doi: 10.1016/j.biortech.2008.11.038 |
[8] | WANG L K, ZENG G M, YANG Z H, et al. Operation of partial nitrification to nitrite of landfill leachate and its performance with respect to different oxygen conditions[J]. Biochemical Engineering Journal, 2014, 87: 62-68. doi: 10.1016/j.bej.2014.03.013 |
[9] | ANTILEO C, WERNER A, CIUDAD G, et al. Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor[J]. Biochemical Engineering Journal, 2006, 32(2): 69-78. doi: 10.1016/j.bej.2006.09.003 |
[10] | JOHNSON D R, LEE T K, PARK J, et al. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability[J]. Environmental Microbiology, 2015, 17(12): 4851-4860. doi: 10.1111/1462-2920.12429 |
[11] | SALEM S, BERENDS D H J G, HEIJNEN J, et al. Bio-augmentation by nitrification with return sludge[J]. Water Research, 2003, 37(8): 1794-1804. doi: 10.1016/S0043-1354(02)00550-X |
[12] | BERENDS D, SALEM S, VAN DER ROEST H F, et al. Boosting nitrification with the BABE technology[J]. Water Science and Technology, 2005, 52(4): 63-70. doi: 10.2166/wst.2005.0088 |
[13] | 徐浩, 李捷, 罗凡, 等. 低C/N比城市污水短程硝化特性及微生物种群分布[J]. 环境工程学报, 2017, 11(3): 1477-1481. doi: 10.12030/j.cjee.201511206 |
[14] | DANIEL L M, POZZI E, FORESTI E, et al. Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor[J]. Bioresource Technology, 2009, 100(3): 1100-1107. doi: 10.1016/j.biortech.2008.08.003 |
[15] | TERADA A, SUGAWARA S, YAMAMOTO T, et al. Physiological characteristics of predominant ammonia-oxidizing bacteria enriched from bioreactors with different influent supply regimes[J]. Biochemical Engineering Journal, 2013, 79: 153-161. doi: 10.1016/j.bej.2013.07.012 |
[16] | 章正勇, 陈旭, 安立超. 氨氧化细菌富集培养的实验研究[J]. 化学与生物工程, 2007, 24(7): 63-67. doi: 10.3969/j.issn.1672-5425.2007.07.020 |
[17] | YAO R D, YANG H, YU M Y, et al. Enrichment of ammonia-oxidizing bacteria and microbial diversity analysis by high-throughput sequencing[J]. Journal of Residuals Science and Technology, 2017, 14(1): 77-84. doi: 10.12783/issn.1544-8053/14/1/10 |
[18] | 姚仁达. 氨氧化和硝化细菌菌群筛选与富集培养及其固定化研究[D]. 北京: 北京工业大学, 2017. |
[19] | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[20] | ANTHONISEN A C, LOEHR R C, PRAKASAM T B S, et al. Inhibition of nitrification by ammonia and nitrous-acid[J]. Journal Water Pollution Control Federation, 1976, 48(5): 835-852. |
[21] | YAO R D, YANG H, YU M Y, et al. Enrichment of nitrifying bacteria and microbial diversity analysis by high-throughput sequencing[J]. RSC Advances, 2016, 6(115): 113959-113966. doi: 10.1039/C6RA24213H |
[22] | VADIVELU V M, KELLER J, YUAN Z. Free ammonia and free nitrous acid inhibition on the anabolic and catabolic processes of Nitrosomonas and Nitrobacter[J]. Water Science and Technology, 2007, 56(7): 89-97. doi: 10.2166/wst.2007.612 |
[23] | BAE W, BAEK S, CHUNG J, et al. Optimal operational factors for nitrite accumulation in batch reactors[J]. Biodegradation, 2001, 12(5): 359-366. doi: 10.1023/A:1014308229656 |
[24] | VADIVELU V M, KELLER J, YUAN Z. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture[J]. Biotechnology and Bioengineering, 2006, 95(5): 830-839. doi: 10.1002/bit.21018 |
[25] | 王淑莹, 李论, 李凌云, 等. 快速启动短程硝化过程起始pH值对亚硝酸盐积累的影响[J]. 北京工业大学学报, 2011, 37(7): 1067-1072. |
[26] | 孙振世, 柯强, 陈英旭. SBR生物脱氮机理及其影响因素[J]. 中国沼气, 2001, 19(2): 16-19. doi: 10.3969/j.issn.1000-1166.2001.02.004 |
[27] | WANG J L, YANG N. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry, 2004, 39(10): 1223-1229. doi: 10.1016/S0032-9592(03)00249-8 |
[28] | SIRIPONG S, RITTMANN B E. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants[J]. Water Research, 2007, 41(5): 1110-1120. doi: 10.1016/j.watres.2006.11.050 |
[29] | WANG X H, WEN X H, CRIDDLE C, et al. Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems[J]. Journal of Environmental Sciences, 2010, 22(4): 627-634. doi: 10.1016/S1001-0742(09)60155-8 |
[30] | DAIMS H, NIELSEN J L, NIELSEN P H, et al. In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants[J]. Applied and Environmental Microbiology, 2001, 67(11): 5273-5284. doi: 10.1128/AEM.67.11.5273-5284.2001 |
[31] | 于莉芳, 陈青青, 杨晋, 等. 污泥水富集硝化菌的群落结构及动力学参数研究[J]. 环境科学, 2009, 30(7): 2035-2039. doi: 10.3321/j.issn:0250-3301.2009.07.027 |
[32] | 郑平, 徐向阳, 胡宝兰. 新型生物脱氮理论与技术[M]. 北京: 科学出版社, 2004. |