北京林业大学, 水体污染源控制技术北京市重点实验室, 污染水体源控制与生态修复技术北京市高等学校工程研究中心, 北京 100083
Engineering Research Center for Water Pollution Source Control and Eco-Remediation, Beijing Key Laboratory for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
利用外加电势强化厌氧氨氧化处理垃圾焚烧渗沥液短程硝化出水, 研究外加电势对系统脱氮及有机物去除的影响。结果表明, 在外加电势为0.06 V时, TN的去除率由43.2%提升至71.3%, COD的去除率由12.1%提升至24.4%。渗沥液中分子质量大于20 kDa的有机物在外加电势的作用下被部分降解成分子质量相对较小的有机物。外加电势也会刺激微生物产生更多的EPS且能提高其中PN/PS的比值, 这有利于厌氧氨氧化菌在电极表面的生长和富集, 增强微生物的活性。电极生物膜中细胞色素
)、亚硝酸盐还原酶(Nir)、肼合成酶(HZS)和肼脱氢酶(HDH)4种厌氧氨氧化菌的功能酶的活性也在外加电势的作用下得到了提升。
The electric potential (EP) was applied in anammox system to enhance its biotreatment of partial nitrified leachate from municipal solid waste (MSW) plant. The effects of applied EP on total nitrogen (TN) and organic matter removal were investigated. The results showed that at 0.06 V electric potential applied in the anammox system, TN removal and COD efficiencies increased from 43.2% to 71.3% and 12.1% to 24.4%, respectively. Under the effect of applied EP, the macromolecules with molecular weight > 20 kDa in the leachate were degraded into low molecular weighted organics. EP applied could stimulate the microbes, promote the extracellular polymeric substances (EPS) production, and improve the protein (PN)/polysaccharide (PS) ratio, which was conducive to anammox bacteria growth and enrichment on the electrode surface and microbial activity enhancement. Moreover, EP application also strengthened functional enzyme activity of anammox bacteria, such as the Cyt-
in electrode biofilm, Nir, HZS and HDH, and accelerated the rate of electron transfer.
.
Schematic diagram of R1 and R2
Variation of nitrogen concentration in R1 and R2
Variation of COD and removal efficiency in R1 and R2
3D-EEM spectra analysis
Molecular weight distribution
R1和R2电极生物膜EPS浓度及PN/PS
EPS concentration and PN/PS ratio in the electrode biofilm of R1 and R2
Activity variations of four functional enzymes in electrode biofilm of R1and R2
[1] | 叶杰旭.城市生活垃圾焚烧厂渗沥液生物处理工艺及其效能研究[D].哈尔滨: 哈尔滨工业大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10213-1013035369.htm |
[2] | LEI Y, WEI L, LIU T, et al. Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant[J]. Chemical Engineering Journal, 2018, 348: 992-999. doi: 10.1016/j.cej.2018.05.060 |
[3] | LIU J, ZHANG H, ZHANG P, et al. Two-stage anoxic/oxic combined membrane bioreactor system for landfill leachate treatment: Pollutant removal erformances and microbial community[J]. Bioresource Technology, 2017, 243: 738-746. doi: 10.1016/j.biortech.2017.07.002 |
[4] | MIAO L, WANG S, LI B, et al. Advanced nitrogen removal via nitrite using stored polymers in a modified sequencing batch reactor treating landfill leachate[J]. Bioresource Technology, 2015, 192: 354-360. doi: 10.1016/j.biortech.2015.05.013 |
[5] | YE J X, MU Y J, CHENG X, et al. Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor[J]. Bioresource Technology, 2011, 102(9): 5498-5503. doi: 10.1016/j.biortech.2011.01.001 |
[6] | BERNAT K, IRENA W B. Carbon source in aerobic denitrification[J]. Biochemical Engineering Journal, 2007, 36(2): 116-122. |
[7] | 刘钊, 姜枫, 党岩, 等.氨氮对A/O2 MBBR处理垃圾焚烧渗沥液厌氧出水的影响[J].环境工程学报, 2016, 10(8): 3986-3992. |
[8] | LIU Y, NGO H H, GUO W, et al. The roles of free ammonia (FA) in biological wastewater treatment processes: A review[J]. Environment International, 2019, 123: 10-19. doi: 10.1016/j.envint.2018.11.039 |
[9] | MULDER A, VAN DE GRAAF A A, ROBERTSON L, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. doi: 10.1111/fem.1995.16.issue-3 |
[10] | 王亚宜, 黎力, 马骁, 等.厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J].环境科学学报, 2014, 34(6):1362-1374. |
[11] | JIN R C, YANG G F, YU J J, et al. The inhibition of the Anammox process: A review[J]. Chemical Engineering Journal, 2012, 197: 67-79. doi: 10.1016/j.cej.2012.05.014 |
[12] | WU L, LI Z, ZHAO C, et al. A novel partial-denitrification strategy for post-anammox to effectively remove nitrogen from landfill leachate[J]. Science of the Total Environment, 2018, 633: 745-751. doi: 10.1016/j.scitotenv.2018.03.213 |
[13] | LI X, YUAN Y, WANG F, et al. Highly efficient of nitrogen removal from mature landfill leachate using a combined DN-PN-Anammox process with a dual recycling system[J]. Bioresource Technology, 2018, 265: 357-364. doi: 10.1016/j.biortech.2018.06.023 |
[14] | YAMAMOTO T, WAKAMATSU S, QIAO S, et al. Partial nitritation and anammox of a livestock manure digester liquor and analysis of its microbial community[J]. Bioresource Technology, 2011, 102(3): 2342-2347. doi: 10.1016/j.biortech.2010.10.091 |
[15] | SUTO R, ISHIMOTO C, CHIKYU M, et al. Anammox biofilm in activated sludge swine wastewater treatment plants[J]. Chemosphere, 2017, 167: 300-307. doi: 10.1016/j.chemosphere.2016.09.121 |
[16] | WANG G, XU X, ZHOU L, et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment[J]. Bioresource Technology, 2017, 241: 181-189. doi: 10.1016/j.biortech.2017.02.125 |
[17] | LI L, DONG Y, QIAN G, et al. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen[J]. Bioresource Technology, 2018, 258: 168-176. doi: 10.1016/j.biortech.2018.02.121 |
[18] | SRIKANTH S, KUMAR M, PURI S. Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry[J]. Bioresource Technology, 2018, 265: 506-518. doi: 10.1016/j.biortech.2018.02.059 |
[19] | LIU H, YAN Q, SHEN W. Biohydrogen facilitated denitrification at biocathode in bioelectrochemical system (BES)[J]. Bioresource Technology, 2014, 171: 187-192. doi: 10.1016/j.biortech.2014.08.056 |
[20] | JIANG F, QIU B, SUN D Z. Advanced degradation of refractory pollutants in incineration leachate by UV/peroxymonosulfate[J]. Chemical Engineering Journal, 2018, 349: 338-346. doi: 10.1016/j.cej.2018.05.062 |
[21] | DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356. doi: 10.1021/ac60111a017 |
[22] | LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Bhemistry, 1951, 193: 265-275. |
[23] | STROUS M, HEIJNEN J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. doi: 10.1007/s002530051340 |
[24] | WAKI M, TOKUTOMI T, YOKOYAMA H, et al. Nitrogen removal from animal waste treatment water by anammox enrichment[J]. Bioresource Technology, 2007, 98(14): 2775-2780. doi: 10.1016/j.biortech.2006.09.031 |
[25] | JETTEN M S, STROUS M, VAN DE PAS-SCHOONEN K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology Reviews, 1998, 22(5): 421-437. doi: 10.1111/j.1574-6976.1998.tb00379.x |
[26] | ISAKA K, SUMINO T, TSUNEDA S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions[J]. Journal of Bioscience and Bioengineering, 2007, 103(5): 486-490. doi: 10.1263/jbb.103.486 |