删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

反硝化生物滤池反冲洗周期优化及水力特性

本站小编 Free考研考试/2021-12-31

金秋1,,
陈昊1,
崔敏华1,2,3,
张衍1,2,3,
郑志永1,2,
刘和1,2,3
1.江南大学环境与土木学院,无锡 214122
2.江苏省厌氧生物技术重点实验室,无锡 214122
3.江苏省水处理技术与材料协同创新中心,苏州 215009
基金项目: 江苏省太湖水环境综合治理科研课题资助项目TH2016201
江苏省自然科学基金资助项目BK20180633江苏省太湖水环境综合治理科研课题资助项目(TH2016201)
江苏省自然科学基金资助项目(BK20180633)




Optimization of backwashing cycle and hydraulic characteristics of denitrifying biofilter

JIN Qiu1,,
CHEN Hao1,
CUI Minhua1,2,3,
ZHANG Yan1,2,3,
ZHENG Zhiyong1,2,
LIU He1,2,3
1.School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
2.Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
3.Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China

-->

摘要
HTML全文
(0)(0)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为探究反硝化生物滤池(DNBF)的最适运行参数和反冲洗周期,分别以石英砂和火山岩构建起2套DNBF,优化了水力停留时间(HRT)和碳氮比(C/N);通过滤池的处理效果、停留时间分布(RTD)分析和水力模型拟合确定了最佳的反冲洗周期。结果表明:在DNBF稳定运行后,2种填料的滤池处理效果相近,当HRT和C/N分别为2 h和4∶1时,出水的化学需氧量(COD)和总氮(TN)分别是(28.3±1.2) mg·L-1和(2.5±0.3) mg·L-1,此时碳源利用率较高;由脱氮性能和RTD分析得出的最佳反冲洗周期为1 d,出水COD和TN可分别达到(17.9±1.4) mg·L-1和(1.8±0.2) mg·L-1;当反冲洗周期延长后,滤池出水COD上升,脱氮性能大幅度下降,RTD曲线出峰从1θ (标准化时间)提前到0.5θ处、1.25θ和1.5θ处出现沟流现象,滤池中的流态趋向于混流式的多釜串联模型。通过RTD实验揭示不同反冲洗工况下DNBF内部水力特性的变化,可用于优化滤池的反冲洗周期。
关键词: 反硝化生物滤池/
反冲洗周期/
停留时间分布/
水力模型

Abstract:To explore the optimal operating parameters and backwashing cycle of denitrifying biofilters (DNBFs), two DNBFs were constructed with quartz sand and volcanic rock served as their respective filter material. Hydraulic retention time (HRT) and carbon/nitrogen ratio (C/N) of DNBFs were optimized. Then the optimal backwashing cycle was determined by the treatment effect, residence time distribution (RTD) and hydraulic model fitting. The results showed that two DNBFs had the similar performances after their stable operation. At 2 h HRT and 4:1 C/N ratio, chemical oxygen demand (COD) and total nitrogen (TN) of the effluent were (28.3±1.2) mg·L-1 and (2.5±0.3) mg·L-1, respectively, and a good carbon source utilization efficiency for denitrification was achieved. Through nitrogen removal performance and RTD analysis, the optimal backwashing period was determined as 1 d, then COD and TN concentrations in the DNBFs effluent reached (17.9±1.4) mg·L-1 and (1.8±0.2) mg·L-1, respectively. When the backwashing cycle was extended, the effluent COD concentration increased and the denitrification performance deteriorated. The time for peak appearance of the RTD curve moved forward from 1θ (normalized time) to 0.5θ, the channeling phenomena occurred at 1.25θ and 1.5θ, and the flow regime in the DNBF approached a mixed-flow multi-tank series model. The study indicated that the RTD experiment could reveal the change of internal hydraulic characteristics of DNBFs under different backwashing conditions, which can be used to optimize the backwashing cycle of the filter.
Key words:denitrifying biofilter (DNBF)/
backwashing cycle/
residence time distribution (RTD)/
hydraulic model.

加载中
[1] 吕伟伟, 姚昕, 张保华, 等. 太湖颗粒态有机质的荧光特征及环境指示意义[J]. 环境科学, 2018, 39(5): 2056-2066.
[2] 潘碌亭, 谢欣珏, 王九成, 等. 脱氮除磷生物滤池填料制备及其对农村生活污水的处理效果[J]. 农业工程学报, 2017, 33(9): 238-244.
[3] ARNALDOS M, PAGILLA K. Effluent dissolved organic nitrogen and dissolved phosphorus removal by enhanced coagulation and microfiltration[J]. Water Research, 2010, 44(18): 5306-5315.
[4] 王波, 梅峰, 李旭宁, 等. 反硝化生物滤池用于白酒废水深度脱氮处理研究[J]. 中国给水排水, 2014, 30(17): 120-122.
[5] 王志祥, 白宇, 甘一萍, 等. 前置反硝化生物滤池的启动研究[J]. 中国给水排水, 2012, 28(1): 20-23.
[6] CUI B, LIU X H, YANG Q, et al., Achieving partial denitrification through control of biofilm structure during biofilm growth in denitrifying biofilter[J]. Bioresource Technology, 2017, 238: 223-231.
[7] 赵运新, 曾辉平, 吕育锋, 等. 生物除铁除锰滤池反冲洗铁锰泥除As(V)研究[J]. 中国给水排水, 2017, 33(11): 1-6.
[8] LIU X H, WANG H C, LONG F, et al. Optimizing and real-time control of biofilm formation, growth and renewal in denitrifying biofilter[J]. Bioresource Technology, 2016, 209: 326-332.
[9] 周晓黎, 孙迎雪, 沈丹丹, 等. 反硝化生物滤池反冲洗前后的生物膜特征研究[J]. 环境科学与技术, 2015, 38(6P): 26-29.
[10] 胡碧波, 阳春, WHEATLEY A. 不同滤料的潜没式曝气滤池的水力特性[J]. 重庆大学学报, 2011, 34(S1): 30-34.
[11] B?RNER M, BüCK A, TSOTSAS E. DEM-CFD investigation of particle residence time distribution in top-spray fluidised bed granulation[J]. Chemical Engineering Science, 2017, 161: 187-197.
[12] WOLIN E A, WOLIN M J, WOLFE R S. Formation of methane by bacterial extracts[J]. Journal of Biological Chemistry, 1963, 238(8): 2882-2886.
[13] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002.
[14] POGGE V, JENKYNS H C, WOODFINE R G. Lithium isotope evidence for enhanced weathering during oceanic anoxic event[J]. Nature Geoscience, 2013, 6(8): 668-672.
[15] 未碧贵. 石英砂滤料表面改性及其过滤除油性能研究[D]. 兰州: 兰州交通大学, 2015
[16] 袁莹, 周伟丽, 王晖, 等. 不同电子供体的硫自养反硝化脱氮试验研究[J]. 环境科学, 2013, 34(5): 1835-1844.
[17] 宋慧敏, 周小红, 张永明, 等. 基于微电极技术的反硝化滤池生物膜特性分析[J]. 中国环境科学, 2012, 32(5): 850-854.
[18] 徐立杰, 郭春艳, 彭永臻, 等. 强化生物除磷系统的微生物学及生化特性研究进展[J]. 应用与环境生物学报, 2011, 17(3): 427-434.
[19] LI P, ZUO J, WANG Y. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium[J]. Water Research, 2016, 93: 74-83.
[20] 孙立柱. ABR反应器运行特性的研究[D]. 苏州: 苏州科技学院, 2010.
[21] 陈小光, 郑平. 超高效螺旋式厌氧生物反应器流态研究[J]. 环境科学学报, 2010, 30(5): 941-946.
[22] 董亮, 曾涛, 刘少北, 等. 基于PIV技术的ABR反应器在不同HRT下的液相流态特性[J]. 环境工程学报, 2017, 11(6): 3922-3928.
[23] 邵川, 周正伟, 李俊, 等. 基于玻璃微珠填料生物滤池生物堵塞模型[J]. 环境工程学报, 2017, 11(10): 5368-5374.
[24] WEI N, SHI Y, WU G, et al. Removal of nitrogen and phosphorus from the secondary effluent in tertiary denitrifying biofilters combined with micro-coagulation[J]. Water Science and Technology, 2016, 73(11): 2754-2760.
[25] FENG Y, LI X, SONG T, et al. Effect of backwashing on the microbial community structure and composition of a three dimensional particle electrode coupled with biological aerated filter reactor (TDE-BAF)[J]. Ecological Engineering, 2017, 101: 21-27.
[26] 李高洁. 厌氧膨胀颗粒污泥床(EGSB)反应器水力混合特性研究[D]. 合肥: 合肥工业大学, 2004.
[27] 张红陶, 郑平. 一体化笼式生物脱氮反应器水力特性[J]. 化工学报, 2013, 64(10): 3760-3766.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1075
HTML全文浏览数:1010
PDF下载数:72
施引文献:0
出版历程

刊出日期:2019-06-18




-->








反硝化生物滤池反冲洗周期优化及水力特性

金秋1,,
陈昊1,
崔敏华1,2,3,
张衍1,2,3,
郑志永1,2,
刘和1,2,3
1.江南大学环境与土木学院,无锡 214122
2.江苏省厌氧生物技术重点实验室,无锡 214122
3.江苏省水处理技术与材料协同创新中心,苏州 215009
基金项目: 江苏省太湖水环境综合治理科研课题资助项目TH2016201 江苏省自然科学基金资助项目BK20180633江苏省太湖水环境综合治理科研课题资助项目(TH2016201) 江苏省自然科学基金资助项目(BK20180633)
关键词: 反硝化生物滤池/
反冲洗周期/
停留时间分布/
水力模型
摘要:为探究反硝化生物滤池(DNBF)的最适运行参数和反冲洗周期,分别以石英砂和火山岩构建起2套DNBF,优化了水力停留时间(HRT)和碳氮比(C/N);通过滤池的处理效果、停留时间分布(RTD)分析和水力模型拟合确定了最佳的反冲洗周期。结果表明:在DNBF稳定运行后,2种填料的滤池处理效果相近,当HRT和C/N分别为2 h和4∶1时,出水的化学需氧量(COD)和总氮(TN)分别是(28.3±1.2) mg·L-1和(2.5±0.3) mg·L-1,此时碳源利用率较高;由脱氮性能和RTD分析得出的最佳反冲洗周期为1 d,出水COD和TN可分别达到(17.9±1.4) mg·L-1和(1.8±0.2) mg·L-1;当反冲洗周期延长后,滤池出水COD上升,脱氮性能大幅度下降,RTD曲线出峰从1θ (标准化时间)提前到0.5θ处、1.25θ和1.5θ处出现沟流现象,滤池中的流态趋向于混流式的多釜串联模型。通过RTD实验揭示不同反冲洗工况下DNBF内部水力特性的变化,可用于优化滤池的反冲洗周期。

English Abstract






--> --> --> 参考文献 (27)
相关话题/生物 水力 环境科学 优化 环境