删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Mn对超富集植物青葙Cd毒害的缓解效应

本站小编 Free考研考试/2021-12-30

程艳1,
刘杰1,2,,,
蒋萍萍1,2,
俞果1,2,
蒋旭升1,
丁志凡1,
雷玲1,
张冰1
1. 桂林理工大学, 广西环境污染控制理论与技术重点实验室, 桂林 541004;
2. 自然资源部南方石山地区矿山地质环境修复工程技术创新中心, 桂林 541004
作者简介: 程艳(1996-),女,硕士研究生,研究方向为土壤重金属污染植物修复,E-mail:2672469167@qq.com.
通讯作者: 刘杰,liujie@glut.edu.cn ;
基金项目: 国家自然科学基金资助项目(41867022);广西高等学校高水平创新团队及卓越****计划资助项目(桂财教函[2018]319号)


中图分类号: X171.5


Mitigation Effect of Mn on Cd Toxicity in a Hyperaccumulator Celosia argentea Linn.

Cheng Yan1,
Liu Jie1,2,,,
Jiang Pingping1,2,
Yu Guo1,2,
Jiang Xusheng1,
Ding Zhifan1,
Lei Ling1,
Zhang Bing1
1. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China;
2. Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Ministry of Natural Resources, Guilin 541004, China
Corresponding author: Liu Jie,liujie@glut.edu.cn ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(34)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了探究Cd胁迫下青葙中Mn的生理作用,通过水培实验,研究在Cd暴露下(0、5和25 μmol·L-1)施加Mn(5、100和1 000 μmol·L-1)对青葙的干重、叶绿素含量、Cd含量和青葙根部不同区域实时Cd2+流速的影响。结果表明,提高Mn的供应水平可缓解Cd对青葙生长的抑制效应。在Cd浓度为5 μmol·L-1,施加1 000 μmol·L-1的Mn时,青葙的根、茎、叶干重和总干重分别增加了26.8%、11.8%、22.7%和21.19%。当Cd处理浓度为25 μmol·L-1时,1 000 μmol·L-1的Mn显著增加了青葙的叶绿素a和总叶绿素的含量(P<0.05)。相反地,Mn的添加显著减少了叶片中的丙二醛含量(P<0.05)。在Cd处理为5 μmol·L-1和25 μmol·L-1时,施加Mn使丙二醛含量降低了30%。这表明,Mn浓度的增加能够减少Cd对青葙的脂质过氧化伤害,保护叶绿素。Mn对青葙Cd积累的影响并不是严格的拮抗效应。在低Cd浓度(5 μmol·L-1)处理组中,Mn的添加对青葙Cd累积无显著影响(P>0.05)。在高浓度处理时(25 μmol·L-1 Cd),1 000 μmol·L-1的Mn显著降低了青葙根、茎和叶的Cd含量(P<0.05),较施加5 μmol·L-1 Mn处理分别降低了41.4%、41.5%和23.3%。这可能与Mn2+抑制青葙根系对Cd2+的吸收有关。非损伤微测技术(NMT)分析结果显示,Mn2+的添加显著抑制了根表面Cd2+的内流速率。当加入50 μmol·L-1的Mn时,距根尖200 μm的Cd2+的内流速率下降了71.4%。上述结果表明,施加Mn有效地缓解了Cd对青葙的毒性效应。
关键词: Cd/
Mn/
青葙/
缓解效应

Abstract:To explore the mitigation of Cd toxicity to Celosia argentea by Mn, the effects of Mn on the dry weight, chlorophyll content, Cd content and real-time Cd2+ flux in different regions of root were studied using a hydroponic experiment with three levels of Cd (0, 5 and 25 μmol·L-1) and three levels of Mn (5, 100 and 1 000 μmol·L-1). The results showed that the inhibition of Cd on the growth of C. argentea could be alleviated by increasing the supply of Mn. When the supply concentration of Cd was 5 μmol·L-1, 1 000 μmol·L-1 Mn application increased the dry weight of root, stem, leaf, and total dry weight of C. argentea by 26.8%, 11.8%, 22.7% and 21.19%, respectively. When Cd concentration was 25 μmol·L-1, the contents of chlorophyll a and total chlorophyll in C. argentea were significantly increased by 1 000 μmol·L-1 Mn (P<0.05). On the contrary, the content of malondialdehyde (MDA) in leaves was significantly decreased by adding Mn (P<0.05). At 5 μmol·L-1 and 25 μmol·L-1 Cd treatment, Mn application reduced MDA content by 30%. This finding indicated that elevation of Mn supply can reduce the lipid peroxidation injury of Cd to C. argentea and protect chlorophyll. The effect of Mn on Cd accumulation in C. argentea was not full antagonism. At 5 μmol·L-1 Cd treatment, the addition of Mn had no significant effect on Cd accumulation (P>0.05). At high concentration Cd treatment (25 μmol·L-1), application of 1 000 μmol·L-1 Mn significantly decreased the Cd concentrations in roots, stems and leaves (P<0.05), which were 41.4%, 41.5% and 23.3% lower than those with 5 μmol·L-1 Mn treatment, respectively. This may be related to the inhibition of Cd2+ uptake by C. argentea roots by Mn2+. Non-invasive micro-test analysis (NMT) showed that the addition of Mn2+ significantly inhibited the Cd2+ influxes at the root surface. The addition of 50 μmol·L-1 Mn2+ decreased the rates of Cd2+ flux by 71.4% at 200 μm from root tip. The above results showed that the toxic effect of Cd on C. argentea was effectively alleviated by applying Mn.
Key words:Cd/
Mn/
Celosia argentea/
mitigation.

加载中
王娜, 魏样. 土壤重金属镉污染来源及其修复技术探究[J]. 环境与发展, 2019, 31(8):55-56, 58 Wang N, Wei Y. Study on sources of heavy metal cadmium pollution in soil and its remediation technology[J]. Environment and Development, 2019, 31(8):55-56, 58(in Chinese)
陈志良, 莫大伦, 仇荣亮. 镉污染对生物有机体的危害及防治对策[J]. 环境保护科学, 2001, 27(4):37-39Chen Z L, Mo D L, Qiu R L. Biological damage of soil cadmium (Cd) pollution and its control[J]. Environmental Protection Science, 2001, 27(4):37-39(in Chinese)
中华人民共和国国土资源部. 环境保护部和国土资源部发布全国土壤污染状况调查公报[J]. 资源与人居环境, 2014(4):26-27
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź E A. The message of nitric oxide in cadmium challenged plants[J]. Plant Science, 2011, 181(5):612-620
杨亚丽, 李友丽, 陈青云, 等. 土壤铅、镉、铬对蔬菜发育影响及迁移规律的研究进展[J]. 华北农学报, 2015, 30(S1):511-517Yang Y L, Li Y L, Chen Q Y, et al. The research progress of lead, cadmium and chromium in soil on the growth and migration of vegetables[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(S1):511-517(in Chinese)
张静, 赵秀侠, 汪翔, 等. 重金属镉(Cd)胁迫对水芹生长及生理特性的影响[J]. 植物生理学报, 2015, 51(11):1969-1974Zhang J, Zhao X X, Wang X, et al. Effects of cadmium stress on the growth and physiological property of Oenanthe javanica[J]. Plant Physiology Journal, 2015, 51(11):1969-1974(in Chinese)
陈琪, 朱润良, 葛飞, 等. 两种典型粘土矿物对狐尾藻镉毒害效应的缓解作用[J]. 环境化学, 2017, 36(7):1596-1601Chen Q, Zhu R L, Ge F, et al. Alleviating effect of two clay minerals toward cadmium treated Myriophyllum verticillatum[J]. Environmental Chemistry, 2017, 36(7):1596-1601(in Chinese)
Yang H Y, Wu W L, Li W L, et al. Accumulation and physiological response of cadmium in Hydrocharis dubia[J]. Biologia, 2017, 72(2):145-152
Varun M, Ogunkunle C O, Sarathambal C, et al. Effect of cadmium uptake on growth and physiology of water lettuce[J]. Indian Journal of Weed Science, 2017, 49(1):102-104
葛依立, 陈心胜, 黄道友, 等. 湿地植物水蓼(Polygonum hydropiper L.)对镉的富集特征及生理响应[J]. 生态毒理学报, 2020, 15(2):190-200Ge Y L, Chen X S, Huang D Y, et al. Accumulation characteristics and physiological responses of the wetland plant, Polygonum hydropiper L. to cadmium[J]. Asian Journal of Ecotoxicology, 2020, 15(2):190-200(in Chinese)
秦晓凤, 徐瑞成, 王振华, 等. 锰锌铁氧体/锆钛酸铅复合陶瓷微结构及磁电性能研究[J]. 电子元件与材料, 2019, 38(8):20-28Qin X F, Xu R C, Wang Z H, et al. Microstructure and magnetoelectric properties of MZFO/PZT composite ceramics[J]. Electronic Components and Materials, 2019, 38(8):20-28(in Chinese)
叶攀骅, 王洋, 刘可慧, 等. 改良剂对锰超富集植物短毛蓼锰吸收及抗氧化酶系统的影响[J]. 土壤, 2016, 48(1):109-116Ye P H, Wang Y, Liu K H, et al. Effects of mineral amendment on manganese absorption and antioxidant enzymes activities in hyperaccumulator Polygonum pubescens Blume[J]. Soils, 2016, 48(1):109-116(in Chinese)
Li M S, Luo Y P, Su Z Y. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China[J]. Environmental Pollution, 2007, 147(1):168-175
徐莜, 杨益新, 李文华, 等. 锰离子浓度及其转运通道对水稻幼苗镉吸收转运特性的影响[J]. 农业环境科学学报, 2016, 35(8):1429-1435Xu Y, Yang Y X, Li W H, et al. Effects of manganese concentrations and transporters on uptake and translocation of cadmium in rice seedlings[J]. Journal of Agro-Environment Science, 2016, 35(8):1429-1435(in Chinese)
Peng K J, Luo C L, You W X, et al. Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca Americana L.[J]. Journal of Hazardous Materials, 2008, 154(1-3):674-681
Zornoza P, Sánchez-Pardo B, Carpena R O. Interaction and accumulation of manganese and cadmium in the manganese accumulator Lupinus albus[J]. Journal of Plant Physiology, 2010, 167(13):1027-1032
Liu J, Yu G, Jiang P P, et al. Interaction of Mn and Cd during their uptake in Celosia argentea differs between hydroponic and soil systems[J]. Plant and Soil, 2020, 450(1-2):323-336
Jarvis S C, Jones L H P, Hopper M J. Cadmium uptake from solution by plants and its transport from roots to shoots[J]. Plant and Soil, 1976, 44(1):179-191
Cataldo D A, Garland T R, Wildung R E. Cadmium uptake kinetics in intact soybean plants[J]. Plant Physiology, 1983, 73(3):844-848
Pal'ove-Balang P, Kisová A, Pavlovkin J, et al. Effect of manganese on cadmium toxicity in maize seedlings[J]. Plant, Soil and Environment, 2011, 52(4):143-149
李明顺, 钟闱桢. 锰和镉单独及联合染毒对豇豆生长及叶片脂质过氧化的影响[J]. 环境与健康杂志, 2009, 26(5):431-434Li M S, Zhong W Z. Effect of manganese, cadmium and manganese-cadmium combined exposure on cowpea growth and leaf physiological parameters[J]. Journal of Environment and Health, 2009, 26(5):431-434(in Chinese)
李然, 徐应明, 王林, 等. 不同锰处理对镉胁迫下2种油菜重金属累积和根系形态的影响[J]. 生态毒理学报, 2018, 13(2):140-148Li R, Xu Y M, Wang L, et al. Effects of different manganese treatments on heavy metals accumulation and root morphology of two cultivars of Brassica chinensis under cadmium stress[J]. Asian Journal of Ecotoxicology, 2018, 13(2):140-148(in Chinese)
Huang Q N, An H, Yang Y J, et al. Effects of Mn-Cd antagonistic interaction on Cd accumulation and major agronomic traits in rice genotypes by different Mn forms[J]. Plant Growth Regulation, 2017, 82(2):317-331
Liu J, Mo L Y, Zhang X H, et al. Simultaneous hyperaccumulation of cadmium and manganese in Celosia argentea Linn[J]. International Journal of Phytoremediation, 2018, 20(11):1106-1112
于磊, 刘宗林, 徐宗艺, 等. NaCl胁迫对大豆生理特征的影响[J]. 安徽农业科学, 2019, 47(24):39-41Yu L, Liu Z L, Xu Z Y, et al. Physiological characteristics of soybean under NaCl stress[J]. Journal of Anhui Agricultural Sciences, 2019, 47(24):39-41(in Chinese)
Karimi N, Jamali N, Ghaderian S M. Effects of cadmium and zinc on growth and metal accumulation of Mathiola flavida Boiss[J]. Environmental Engineering and Management Journal, 2014, 13(12):2937-2944
张玉秀, 李林峰, 柴团耀, 等. 锰对植物毒害及植物耐锰机理研究进展[J]. 植物学报, 2010, 45(4):506-520Zhang Y X, Li L F, Chai T Y, et al. Mechanisms of manganese toxicity and manganese tolerance in plants[J]. Chinese Bulletin of Botany, 2010, 45(4):506-520(in Chinese)
钟闱桢. 锰矿区尾矿坝及锰镉复合污染对植物的生态毒理学研究[D]. 桂林:广西师范大学, 2008:34-35 Zhong W Z. Ecotoxicological effect of manganese mine tailings and Mn-Cd combined pollution on plants[D]. Guilin:Guangxi Normal University, 2008:34-35(in Chinese)
Socha A L, Guerinot M L. Mn-euvering manganese:The role of transporter gene family members in manganese uptake and mobilization in plants[J]. Frontiers in Plant Science, 2014, 5:106
Ramos I, Esteban E, Lucena J J, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction[J]. Plant Science, 2002, 162(5):761-767
Wu S W, Shi K L, Hu C X, et al. Non-invasive microelectrode cadmium flux measurements reveal the decrease of cadmium uptake by zinc supply in pakchoi root (Brassica chinensis L.)[J]. Ecotoxicology and Environmental Safety, 2019, 168:363-368
Sasaki A, Yamaji N, Yokosho K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5):2155-2167
Yao Y N, Xu G, Mou D L, et al. Subcellular Mn compartation, anatomic and biochemical changes of two grape varieties in response to excess manganese[J]. Chemosphere, 2012, 89(2):150-157
Saraswat S, Rai J P N. Complexation and detoxification of Zn and Cd in metal accumulating plants[J]. Reviews in Environmental Science and Bio/Technology, 2011, 10(4):327-339

相关话题/植物 生理 土壤 环境 污染