删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

中文阅读中无关言语效应的认知机制探究:眼动证据

本站小编 Free考研考试/2022-01-01

吴三美1,2, 田良苏3, 陈家侨3, 陈广耀4(), 王敬欣1()
1天津师范大学心理学部/心理与行为研究院, 天津 300387
2广东农工商职业技术学院教务处, 广州 510507
3华南师范大学心理学院, 广州 510631
4暨南大学新闻与传播学院/媒体国家级实验教学示范中心, 广州 510632
收稿日期:2020-09-14出版日期:2021-07-25发布日期:2021-05-24
通讯作者:陈广耀,王敬欣E-mail:ccggyy86@163.com;wjxpsy@126.com

基金资助:国家自然科学(81771823);教育部人文社会科学研究一般项目(20YJC190024);中央高校基本科研业务费专项资金(19JNQM04)

Exploring the cognitive mechanism of irrelevant speech effect in Chinese reading: Evidence from eye movements

WU Sanmei1,2, TIAN Liangsu3, CHEN Jiaqiao3, CHEN Guangyao4(), WANG Jingxin1()
1Faculty of Psychology/Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300387, China
2Academic Affairs Department, Guangdong AIB Polytechnic College, Guangzhou 510507, China
3School of Psychology, South China Normal University, Guangzhou 510631, China
4School of Journalism & Communication/National Media & Experimental Teaching Center, Jinan University, Guangzhou 510632, China
Received:2020-09-14Online:2021-07-25Published:2021-05-24
Contact:CHEN Guangyao,WANG Jingxin E-mail:ccggyy86@163.com;wjxpsy@126.com






摘要/Abstract


摘要: 采用眼动追踪技术探讨中文阅读中无关言语效应的影响机制, 操纵了背景音的类型(有意义背景音、无意义背景音、无声), 通过3个实验考察其对简单句、复杂句、篇章阅读的影响。结果发现, 被试在无意义背景音条件下加工三类阅读材料时的眼动指标与无声条件相比差异均不显著; 但是, 在有意义背景音条件下, 被试在进行复杂句和篇章阅读时的眼动指标与无声条件相比差异显著, 而在简单句阅读中差异不显著。结果表明, 语义属性才是影响无关言语效应产生的关键因素, 其所起作用受到阅读任务难度的调节, 而对阅读过程的影响主要体现在晚期的词汇加工和语义整合阶段, 本研究结果支持了语义干扰假说。


表1整体分析各眼动指标的均值与标准误
背景音条件 平均注视时间(ms) 句子阅读时间(ms) 句子注视次数 回视次数
无声 224 (1) 4819 (66) 12.67 (0.14) 3.22 (0.06)
无意义语音 224 (1) 4674 (60) 12.38 (0.13) 3.29 (0.06)
有意义语音 225 (1) 4899 (66) 13.22 (0.16) 3.62 (0.07)

表1整体分析各眼动指标的均值与标准误
背景音条件 平均注视时间(ms) 句子阅读时间(ms) 句子注视次数 回视次数
无声 224 (1) 4819 (66) 12.67 (0.14) 3.22 (0.06)
无意义语音 224 (1) 4674 (60) 12.38 (0.13) 3.29 (0.06)
有意义语音 225 (1) 4899 (66) 13.22 (0.16) 3.62 (0.07)


表2实验1句子指标上的线性混合模型分析结果
变量 平均注视时间 句子阅读时间
β SE t p 95% CI β SE t p 95% CI
截距 224.03 4.32 51.91 < 0.001 [5.15, 5.43] 4788.43 232.69 20.58 < 0.001 [8.28, 8.56]
无意义语音vs无声 -0.38 2.24 -0.17 0.87 [-0.12, 0.32] -146.26 118.41 -1.24 0.22 [-0.27, 0.13]
有意义语音vs无声 0.39 1.67 0.23 0.82 [0.17, 0.42] 58.82 103.85 0.57 0.57 [0.26, 0.55]
有意义语音vs无意义语音 0.56 1.9 0.29 0.77 [0.23, 0.58] 190 124.65 1.52 0.13 [0.15, 0.46]
变量 句子注视次数 回视次数
β SE t p 95% CI β SE t p 95% CI
截距 12.66 0.48 26.12 < 0.001 [2.19, 2.54] 3.28 0.18 18.37 < 0.001 [3.47, 3.86]
无意义语音vs无声 -0.31 0.3 -1.01 0.32 [-0.17, 0.33] 0.02 0.13 0.17 0.87 [0.07, 0.28]
有意义语音vs无声 0.45 0.28 1.59 0.12 [0.02, 0.37] 0.35 0.11 3.12 < 0.001 [0.05, 0.42]
有意义语音vs无意义语音 0.69 0.34 1.83 0.06 [0.11, 0.62] 0.30 0.15 2.08 0.04 [0.19, 0.67]

表2实验1句子指标上的线性混合模型分析结果
变量 平均注视时间 句子阅读时间
β SE t p 95% CI β SE t p 95% CI
截距 224.03 4.32 51.91 < 0.001 [5.15, 5.43] 4788.43 232.69 20.58 < 0.001 [8.28, 8.56]
无意义语音vs无声 -0.38 2.24 -0.17 0.87 [-0.12, 0.32] -146.26 118.41 -1.24 0.22 [-0.27, 0.13]
有意义语音vs无声 0.39 1.67 0.23 0.82 [0.17, 0.42] 58.82 103.85 0.57 0.57 [0.26, 0.55]
有意义语音vs无意义语音 0.56 1.9 0.29 0.77 [0.23, 0.58] 190 124.65 1.52 0.13 [0.15, 0.46]
变量 句子注视次数 回视次数
β SE t p 95% CI β SE t p 95% CI
截距 12.66 0.48 26.12 < 0.001 [2.19, 2.54] 3.28 0.18 18.37 < 0.001 [3.47, 3.86]
无意义语音vs无声 -0.31 0.3 -1.01 0.32 [-0.17, 0.33] 0.02 0.13 0.17 0.87 [0.07, 0.28]
有意义语音vs无声 0.45 0.28 1.59 0.12 [0.02, 0.37] 0.35 0.11 3.12 < 0.001 [0.05, 0.42]
有意义语音vs无意义语音 0.69 0.34 1.83 0.06 [0.11, 0.62] 0.30 0.15 2.08 0.04 [0.19, 0.67]


表3局部分析各眼动指标的平均数与标准误
背景音条件 首次注视时间(ms) 凝视时间(ms) 回视路径时间(ms) 总注视时间(ms)
无声 244 (3) 265 (4) 331 (9) 352 (7)
无意义语音 242 (3) 264 (4) 328 (9) 349 (7)
有意义语音 240 (3) 266 (5) 336 (10) 357 (7)

表3局部分析各眼动指标的平均数与标准误
背景音条件 首次注视时间(ms) 凝视时间(ms) 回视路径时间(ms) 总注视时间(ms)
无声 244 (3) 265 (4) 331 (9) 352 (7)
无意义语音 242 (3) 264 (4) 328 (9) 349 (7)
有意义语音 240 (3) 266 (5) 336 (10) 357 (7)


表4实验1目标词上的线性混合模型分析结果
变量 首次注视时间 凝视时间
β SE t p 95% CI β SE t p 95% CI
截距 237.15 5.47 43.36 < 0.001 [5.37, 5.61] 256.56 8.12 31.6 < 0.001 [5.25, 5.72]
无意义语音vs无声 -1.21 4.44 -0.27 0.79 [-0.13, 0.23] -1.09 6.05 -0.18 0.86 [-0.14, 0.29]
有意义语音vs无声 -4.31 4.46 -0.97 0.34 [-0.05, 0.41] -1.79 7.11 -0.25 0.8 [-0.16, 0.32]
有意义语音vs无意义语音 -3.52 4.3 -0.82 0.42 [-0.07, 0.50] -3.82 5.77 -0.66 0.51 [-0.23, 0.47]
变量 回视路径时间 总注视时间
β SE t p 95% CI β SE t p 95% CI
截距 323.66 12.45 26.01 < 0.001 [5.33, 5.68] 343.01 12.16 28.21 < 0.001 [5.42, 5.74]
无意义语音vs无声 0.46 12.83 0.04 0.97 [0.26, 0.44] -4.04 11.4 -0.35 0.72 [-0.09, 0.32]
有意义语音vs无声 1.94 14.81 0.13 0.90 [0.11, 0.34] 2.89 9.98 0.29 0.77 [0.23, 0.55]
有意义语音vs无意义语音 2.04 15.54 0.13 0.91 [0.16, 0.57] 8.25 13.85 0.60 0.55 [0.21, 0.72]

表4实验1目标词上的线性混合模型分析结果
变量 首次注视时间 凝视时间
β SE t p 95% CI β SE t p 95% CI
截距 237.15 5.47 43.36 < 0.001 [5.37, 5.61] 256.56 8.12 31.6 < 0.001 [5.25, 5.72]
无意义语音vs无声 -1.21 4.44 -0.27 0.79 [-0.13, 0.23] -1.09 6.05 -0.18 0.86 [-0.14, 0.29]
有意义语音vs无声 -4.31 4.46 -0.97 0.34 [-0.05, 0.41] -1.79 7.11 -0.25 0.8 [-0.16, 0.32]
有意义语音vs无意义语音 -3.52 4.3 -0.82 0.42 [-0.07, 0.50] -3.82 5.77 -0.66 0.51 [-0.23, 0.47]
变量 回视路径时间 总注视时间
β SE t p 95% CI β SE t p 95% CI
截距 323.66 12.45 26.01 < 0.001 [5.33, 5.68] 343.01 12.16 28.21 < 0.001 [5.42, 5.74]
无意义语音vs无声 0.46 12.83 0.04 0.97 [0.26, 0.44] -4.04 11.4 -0.35 0.72 [-0.09, 0.32]
有意义语音vs无声 1.94 14.81 0.13 0.90 [0.11, 0.34] 2.89 9.98 0.29 0.77 [0.23, 0.55]
有意义语音vs无意义语音 2.04 15.54 0.13 0.91 [0.16, 0.57] 8.25 13.85 0.60 0.55 [0.21, 0.72]


表5整体分析各眼动指标的平均数与标准误
背景音条件 平均注视时间(ms) 句子阅读时间(ms) 句子注视次数 回视次数
无声 262 (1.17) 11063 (188) 32.98 (0.55) 9.72 (0.21)
无意义语音 260 (1.12) 10755 (171) 31.99 (0.48) 9.05 (0.17)
有意义语音 266 (1.21) 13664 (228) 40.68 (0.67) 12.86 (0.27)

表5整体分析各眼动指标的平均数与标准误
背景音条件 平均注视时间(ms) 句子阅读时间(ms) 句子注视次数 回视次数
无声 262 (1.17) 11063 (188) 32.98 (0.55) 9.72 (0.21)
无意义语音 260 (1.12) 10755 (171) 31.99 (0.48) 9.05 (0.17)
有意义语音 266 (1.21) 13664 (228) 40.68 (0.67) 12.86 (0.27)


表6实验2句子指标的线性混合模型分析结果
变量 平均注视时间 句子阅读时间
β SE t p 95% CI β SE t p 95% CI
截距 262.59 4.67 56.21 < 0.001 [6.21, 6.57] 8877.49 754.56 15.74 < 0.001 [7.17, 7.55]
无意义语音vs无声 -2.20 1.33 -1.66 0.10 [-0.61, -0.28] -332.92 333.05 -1.00 0.32 [-0.79, -0.41]
有意义语音vs无声 4.06 2.08 1.96 0.05 [0.51, 0.59] 2661.43 511.56 5.20 < 0.001 [0.21, 0.62]
有意义语音vs无意义语音 6.26 2.04 3.06 0.003 [0.12, 0.60] 2999.39 403.68 7.43 < 0.001 [0.29, 0.75]
变量 句子注视次数 回视次数
β SE t p 95% CI β SE t p 95% CI
截距 35.37 2.17 16.28 < 0.001 [4.16, 4.65] 10.60 0.78 13.64 < 0.001 [4.21, 4.68]
无意义语音vs无声 -1.07 1.05 -1.02 0.31 [-0.69, -0.35] -0.67 0.46 -1.44 0.15 [-0.51, -0.17]
有意义语音vs无声 7.86 1.51 5.20 < 0.001 [0.17, 0.61] 3.22 0.62 5.21 < 0.001 [0.24, 0.63]
有意义语音vs无意义语音 8.91 1.21 7.38 < 0.001 [0.27, 0.77] 3.87 0.56 6.91 < 0.001 [0.15, 0.68]

表6实验2句子指标的线性混合模型分析结果
变量 平均注视时间 句子阅读时间
β SE t p 95% CI β SE t p 95% CI
截距 262.59 4.67 56.21 < 0.001 [6.21, 6.57] 8877.49 754.56 15.74 < 0.001 [7.17, 7.55]
无意义语音vs无声 -2.20 1.33 -1.66 0.10 [-0.61, -0.28] -332.92 333.05 -1.00 0.32 [-0.79, -0.41]
有意义语音vs无声 4.06 2.08 1.96 0.05 [0.51, 0.59] 2661.43 511.56 5.20 < 0.001 [0.21, 0.62]
有意义语音vs无意义语音 6.26 2.04 3.06 0.003 [0.12, 0.60] 2999.39 403.68 7.43 < 0.001 [0.29, 0.75]
变量 句子注视次数 回视次数
β SE t p 95% CI β SE t p 95% CI
截距 35.37 2.17 16.28 < 0.001 [4.16, 4.65] 10.60 0.78 13.64 < 0.001 [4.21, 4.68]
无意义语音vs无声 -1.07 1.05 -1.02 0.31 [-0.69, -0.35] -0.67 0.46 -1.44 0.15 [-0.51, -0.17]
有意义语音vs无声 7.86 1.51 5.20 < 0.001 [0.17, 0.61] 3.22 0.62 5.21 < 0.001 [0.24, 0.63]
有意义语音vs无意义语音 8.91 1.21 7.38 < 0.001 [0.27, 0.77] 3.87 0.56 6.91 < 0.001 [0.15, 0.68]


表7局部分析各眼动指标的平均数与标准误
背景音条件 首次注视时间(ms) 凝视时间(ms) 回视路径时间(ms) 总注视时间(ms)
无声 263 (1.17) 311 (1.96) 754 (11.69) 541 (4.21)
无意义语音 259 (1.16) 300 (1.82) 761 (11.90) 520 (3.93)
有意义语音 266 (1.29) 315 (2.22) 1025 (17.61) 669 (5.43)

表7局部分析各眼动指标的平均数与标准误
背景音条件 首次注视时间(ms) 凝视时间(ms) 回视路径时间(ms) 总注视时间(ms)
无声 263 (1.17) 311 (1.96) 754 (11.69) 541 (4.21)
无意义语音 259 (1.16) 300 (1.82) 761 (11.90) 520 (3.93)
有意义语音 266 (1.29) 315 (2.22) 1025 (17.61) 669 (5.43)


表8实验2目标词的线性混合模型分析结果
变量 首次注视时间 凝视时间
β SE t p 95% CI β SE t p 95% CI
截距 260.32 5.08 51.21 < 0.001 [4.34, 4.65] 302.86 9.44 32.08 < 0.001 [4.27, 4.59]
无意义语音vs无声 -1.95 2.62 -0.75 0.46 [-0.63, -0.27] -4.56 5.14 -0.89 0.38 [-0.58, -0.22]
有意义语音vs无声 2.18 3.41 0.64 0.52 [0.19, 0.56] 5.71 5.21 1.10 0.28 [0.18, 0.53]
有意义语音vs无意义语音 4.14 3.40 1.22 0.23 [0.17, 0.58] 10.27 6.44 1.60 0.12 [0.31, 0.66]
变量 回视路径时间 总注视时间
β SE t p 95% CI β SE t p 95% CI
截距 898.64 52.56 17.10 < 0.001 [5.22, 5.53] 571.76 36.12 15.83 < 0.001 [5.17, 5.45]
无意义语音vs无声 11.94 34.10 0.35 0.73 [0.19, 0.64] -21.16 17.32 -1.22 0.23 [-0.43, -0.11]
有意义语音vs无声 298.03 44.10 6.55 < 0.001 [0.11, 0.50] 125.60 24.70 5.09 < 0.001 [0.15, 0.51]
有意义语音vs无意义语音 275.97 47.68 5.79 < 0.001 [0.18, 0.62] 146.75 21.01 6.99 < 0.001 [0.31, 0.82]

表8实验2目标词的线性混合模型分析结果
变量 首次注视时间 凝视时间
β SE t p 95% CI β SE t p 95% CI
截距 260.32 5.08 51.21 < 0.001 [4.34, 4.65] 302.86 9.44 32.08 < 0.001 [4.27, 4.59]
无意义语音vs无声 -1.95 2.62 -0.75 0.46 [-0.63, -0.27] -4.56 5.14 -0.89 0.38 [-0.58, -0.22]
有意义语音vs无声 2.18 3.41 0.64 0.52 [0.19, 0.56] 5.71 5.21 1.10 0.28 [0.18, 0.53]
有意义语音vs无意义语音 4.14 3.40 1.22 0.23 [0.17, 0.58] 10.27 6.44 1.60 0.12 [0.31, 0.66]
变量 回视路径时间 总注视时间
β SE t p 95% CI β SE t p 95% CI
截距 898.64 52.56 17.10 < 0.001 [5.22, 5.53] 571.76 36.12 15.83 < 0.001 [5.17, 5.45]
无意义语音vs无声 11.94 34.10 0.35 0.73 [0.19, 0.64] -21.16 17.32 -1.22 0.23 [-0.43, -0.11]
有意义语音vs无声 298.03 44.10 6.55 < 0.001 [0.11, 0.50] 125.60 24.70 5.09 < 0.001 [0.15, 0.51]
有意义语音vs无意义语音 275.97 47.68 5.79 < 0.001 [0.18, 0.62] 146.75 21.01 6.99 < 0.001 [0.31, 0.82]


表9整体分析各眼动指标的平均数与标准误
背景音条件 平均注视时间(ms) 篇章阅读时间(ms) 篇章注视次数 回视次数 阅读速度(字/分钟)
无声 224 (2) 48519 (1452) 153.03 (4.3) 41.78 (1.61) 408 (13)
无意义语音 224 (2) 50241 (1496) 156.98 (4.43) 44.63 (1.64) 387 (11)
有意义语音 225 (2) 51687 (1516) 160.69 (4.41) 45.72 (1.71) 380 (11)

表9整体分析各眼动指标的平均数与标准误
背景音条件 平均注视时间(ms) 篇章阅读时间(ms) 篇章注视次数 回视次数 阅读速度(字/分钟)
无声 224 (2) 48519 (1452) 153.03 (4.3) 41.78 (1.61) 408 (13)
无意义语音 224 (2) 50241 (1496) 156.98 (4.43) 44.63 (1.64) 387 (11)
有意义语音 225 (2) 51687 (1516) 160.69 (4.41) 45.72 (1.71) 380 (11)


表10实验3篇章指标的线性混合模型分析结果
变量 平均注视时间 篇章阅读时间
β SE t p 95% CI β SE t p 95% CI
截距 224.48 4.5 49.91 < 0.001 [4.18, 4.56] 20101.93 2762.11 18.14 < 0.001 [16.26, 16.75]
无意义语音vs无声 0.38 1.36 0.28 0.79 [0.29, 0.54] 1945.7 1512.15 1.29 0.22 [0.24, 0.61]
有意义语音vs无声 1.41 1.57 0.90 0.38 [0.26, 0.67] 3309.55 1334.74 2.48 0.02 [0.31, 0.74]
有意义语音vs无意义语音 1.03 1.3 0.79 0.44 [0.14, 0.62] 1292.62 1600.98 0.81 0.43 [0.25, 0.81]
变量 篇章注视次数 回视次数
β SE t 95% CI β SE t p 95% CI
截距 156.73 8.08 19.4 < 0.001 [6.52, 6.81] 44.03 3.18 13.85 < 0.001 [6.12, 6.51]
无意义语音vs无声 4.55 4.9 0.93 0.37 [0.16, 0.53] 3.05 1.71 1.79 0.10 [0.18, 0.47]
有意义语音vs无声 7.97 4.34 1.84 0.08 [0.19, 0.65] 3.98 1.80 2.22 0.05 [0.15, 0.62]
有意义语音vs无意义语音 3.08 5.33 0.58 0.57 [0.21, 0.77] 0.82 1.89 0.44 0.67 [0.28, 0.73]
变量 阅读速度
β SE t p 95% CI
截距 392.8 23.39 16.79 < 0.001 [4.28, 4.86]
无意义语音vs无声 -22.59 10.89 -2.07 0.06 [-0.72, -0.45]
有意义语音vs无声 -29.42 9.8 -3.00 0.01 [-0.12, 0.38]
有意义语音vs无意义语音 -6.43 9.36 -0.69 0.50 [0.21, 0.56]

表10实验3篇章指标的线性混合模型分析结果
变量 平均注视时间 篇章阅读时间
β SE t p 95% CI β SE t p 95% CI
截距 224.48 4.5 49.91 < 0.001 [4.18, 4.56] 20101.93 2762.11 18.14 < 0.001 [16.26, 16.75]
无意义语音vs无声 0.38 1.36 0.28 0.79 [0.29, 0.54] 1945.7 1512.15 1.29 0.22 [0.24, 0.61]
有意义语音vs无声 1.41 1.57 0.90 0.38 [0.26, 0.67] 3309.55 1334.74 2.48 0.02 [0.31, 0.74]
有意义语音vs无意义语音 1.03 1.3 0.79 0.44 [0.14, 0.62] 1292.62 1600.98 0.81 0.43 [0.25, 0.81]
变量 篇章注视次数 回视次数
β SE t 95% CI β SE t p 95% CI
截距 156.73 8.08 19.4 < 0.001 [6.52, 6.81] 44.03 3.18 13.85 < 0.001 [6.12, 6.51]
无意义语音vs无声 4.55 4.9 0.93 0.37 [0.16, 0.53] 3.05 1.71 1.79 0.10 [0.18, 0.47]
有意义语音vs无声 7.97 4.34 1.84 0.08 [0.19, 0.65] 3.98 1.80 2.22 0.05 [0.15, 0.62]
有意义语音vs无意义语音 3.08 5.33 0.58 0.57 [0.21, 0.77] 0.82 1.89 0.44 0.67 [0.28, 0.73]
变量 阅读速度
β SE t p 95% CI
截距 392.8 23.39 16.79 < 0.001 [4.28, 4.86]
无意义语音vs无声 -22.59 10.89 -2.07 0.06 [-0.72, -0.45]
有意义语音vs无声 -29.42 9.8 -3.00 0.01 [-0.12, 0.38]
有意义语音vs无意义语音 -6.43 9.36 -0.69 0.50 [0.21, 0.56]


表11局部分析各眼动指标的平均数与标准误
背景音条件 首次注视时间(ms) 凝视时间(ms) 回视路径时间(ms) 总注视时间(ms)
无声 231 (2) 250 (2) 397 (7) 255 (3)
无意义语音 227 (2) 244 (2) 413 (8) 261 (4)
有意义语音 228 (1) 246 (2) 440 (9) 276 (4)

表11局部分析各眼动指标的平均数与标准误
背景音条件 首次注视时间(ms) 凝视时间(ms) 回视路径时间(ms) 总注视时间(ms)
无声 231 (2) 250 (2) 397 (7) 255 (3)
无意义语音 227 (2) 244 (2) 413 (8) 261 (4)
有意义语音 228 (1) 246 (2) 440 (9) 276 (4)


表12实验3目标词的线性混合模型分析结果
变量 首次注视时间 凝视时间
β SE t p 95% CI β SE t p 95% CI
截距 225.57 4.6 49.03 < 0.001 [5.48, 5.75] 241.17 5.63 42.83 < 0.001 [5.29, 5.73]
无意义语音vs无声 -3.28 3.67 -0.90 0.40 [-0.07, 0.26] -3.24 4.87 -0.67 0.52 [-0.16, 0.28]
有意义语音vs无声 -1.58 2.86 -0.55 0.59 [-0.19, 0.34] -1.24 3.48 -0.36 0.73 [-0.08, 0.43]
有意义语音vs无意义语音 1.19 2.64 0.45 0.66 [0.15, 0.57] 1.38 3.11 0.45 0.66 [0.19, 0.65]
变量 回视路径时间 总注视时间
β SE t p 95% CI β SE t p 95% CI
截距 410.01 18.11 22.64 < 0.001 [6.16, 6.49] 261.31 15.23 17.16 < 0.001 [5.28.5.65]
无意义语音vs无声 24.22 18.06 1.34 0.19 [0.31, 0.63] 7.93 8.88 0.89 0.38 [0.25, 0.58]
有意义语音vs无声 41.11 17.77 2.31 0.03 [0.04, 0.52] 22.53 9.47 2.38 0.02 [0.21, 0.66]
有意义语音vs无意义语音 28.32 21.09 1.36 0.18 [0.16, 0.77] 15.05 10.59 1.42 0.16 [0.14, 0.62]

表12实验3目标词的线性混合模型分析结果
变量 首次注视时间 凝视时间
β SE t p 95% CI β SE t p 95% CI
截距 225.57 4.6 49.03 < 0.001 [5.48, 5.75] 241.17 5.63 42.83 < 0.001 [5.29, 5.73]
无意义语音vs无声 -3.28 3.67 -0.90 0.40 [-0.07, 0.26] -3.24 4.87 -0.67 0.52 [-0.16, 0.28]
有意义语音vs无声 -1.58 2.86 -0.55 0.59 [-0.19, 0.34] -1.24 3.48 -0.36 0.73 [-0.08, 0.43]
有意义语音vs无意义语音 1.19 2.64 0.45 0.66 [0.15, 0.57] 1.38 3.11 0.45 0.66 [0.19, 0.65]
变量 回视路径时间 总注视时间
β SE t p 95% CI β SE t p 95% CI
截距 410.01 18.11 22.64 < 0.001 [6.16, 6.49] 261.31 15.23 17.16 < 0.001 [5.28.5.65]
无意义语音vs无声 24.22 18.06 1.34 0.19 [0.31, 0.63] 7.93 8.88 0.89 0.38 [0.25, 0.58]
有意义语音vs无声 41.11 17.77 2.31 0.03 [0.04, 0.52] 22.53 9.47 2.38 0.02 [0.21, 0.66]
有意义语音vs无意义语音 28.32 21.09 1.36 0.18 [0.16, 0.77] 15.05 10.59 1.42 0.16 [0.14, 0.62]







[1] Armstrong, G. B., Boiarsky, G. A., & Mares, M.-L. (1991). Background television and reading performance. Communications Monographs, 58(3), 235-253.
doi: 10.1080/03637759109376228URL
[2] Bai, X. J., & Yan, G. L. (2017). Psychology of reading. Shanghai, China: East China Normal University Press.
[白学军, 闫国利. (2017). 阅读心理学. 上海: 华东师范大学出版社.]
[3] Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412.
doi: 10.1016/j.jml.2007.12.005URL
[4] Baddeley, A. D. (2007). Working memory, thought, and action. Oxford, UK: Oxford University Press.
[5] Baddeley, A. D., & Hitch, G. J. (1974). Working memory. Psychology of Learning and Motivation, 8, 47-89.
[6] Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory. Neuropsychology, 8(4), 485-493.
doi: 10.1037/0894-4105.8.4.485URL
[7] Baker, R. W., & Madell, T. O. (1965). A continued investigation of susceptibility to distraction in academically underachieving and achieving male college students. Journal of Educational Psychology, 56(5), 254-258.
pmid: 5825844
[8] Bates, D., Maechler, M., & Bolker, B. (2011). LME4: Linear mixed-effects models using S4 classes. R Package Version 0.999375-39. Retrieved from http://CRAN.R-project.org/package=lme4
[9] Boyle, R., & Coltheart, V. (1996). Effects of irrelevant sounds on phonological coding in reading comprehension and short-term memory. The Quarterly Journal of Experimental Psychology, Section A: Human Experimental Psychology, 49(2), 398-416.
doi: 10.1080/713755630URL
[10] Cauchard, F., Cane, J. E., & Weger, U. W. (2012). Influence of background speech and music in interrupted reading: An eye-tracking study. Applied Cognitive Psychology, 26(3), 381-390.
doi: 10.1002/acp.v26.3URL
[11] Franconeri, S. L., Alvarez, G. A., & Cavanagh, P. (2013). Flexible cognitive resources: Competitive content maps for attention and memory. Trends in Cognitive Sciences, 17(3), 134-141.
doi: 10.1016/j.tics.2013.01.010URL
[12] Gao, Q., & Bai, X. J. (2018). The influence of Chinese and English background pop music to the memory of Chinese and English words in Chinese undergraduates. Acta Psychologica Sinica, 50(1), 1-8.
doi: 10.3724/SP.J.1041.2018.00001URL
[高淇, 白学军. (2018). 中英流行背景音乐对大学生中英词汇记忆的影响. 心理学报, 50(1), 1-8.]
[13] Garcia-Madruga, J. A., Elosua, M. R., Gil, L., Gomez-Veiga, I., Vila, J. O., Orjales, I., ... Duque, G. (2013). Reading comprehension and working memory's executive processes: An intervention study in primary school students. Reading Research Quarterly, 48(2), 155-174.
doi: 10.1002/rrq.2013.48.issue-2URL
[14] Gernsbacher, M. A., & Foertsch, J. A. (2000). Three models of discourse comprehension. In S. Garrod & M. J. Pickering (Eds.), Language processing (pp.283-299). East Sussex, UK: Psychology Press.
[15] Haapakangas, A., Kankkunen, E., Hongisto, V., Virjonen, P., Oliva, D., & Keskinen, E. (2011). Effects of five speech masking sounds on performance and acoustic satisfaction. Implications for open-plan offices. Acta Acustica United With Acustica, 97, 641-655.
doi: 10.3813/AAA.918444URL
[16] Haka, M., Haapakangas, A., Keränen, J., Hakala, J., Keskinen, E., & Hongisto, V. (2009). Performance effects and subjective disturbance of speech in acoustically different office types—A laboratory experiment. Indoor Air, 19(6), 454-467.
doi: 10.1111/j.1600-0668.2009.00608.xpmid: 19702627
[17] Halin, N. (2016). Distracted while reading? Changing to a hard-to-read font shields against the effects of environmental noise and speech on text memory. Frontiers in Psychology, 7, Article 1196.
[18] Halin, N., Marsh, J. E., Haga, A., Holmgren, M., & Sörqvist, P. (2014). Effects of speech on proofreading: Can task-engagement manipulations shield against distraction? Journal of Experimental Psychology: Applied, 20(1), 69-80.
doi: 10.1037/xap0000002URL
[19] Halin, N., Marsh, J. E., Hellman, A., Hellström, I., & Sörqvist, P. (2014). A shield against distraction. Journal of Applied Research in Memory and Cognition, 3(1), 31-36.
doi: 10.1016/j.jarmac.2014.01.003URL
[20] He, L. Y., Huang, Y. Y., Wang, M. X., Meng, Z., & Yan, G. L. (2015). The effects of background noise on Chinese passage reading: An eye movement study. Journal of Psychological Science, 38(6), 1290-1295.
[何立媛, 黄有玉, 王梦轩, 孟珠, 闫国利. (2015). 不同背景音对中文篇章阅读影响的眼动研究. 心理科学, 38(6), 1290-1295.]
[21] Hyönä, J., & Ekholm, M. (2016). Background speech effects on sentence processing during reading: An eye movement study. PloS One, 11(3), Article e0152133.
[22] Jahncke, H., Hygge, S., Halin, N., Green, A. M., & Dimberg, K. (2011). Open-plan office noise: Cognitive performance and restoration. Journal of Environmental Psychology, 31(4), 373-382.
doi: 10.1016/j.jenvp.2011.07.002URL
[23] Jones, D., Madden, C., & Miles, C. (1992). Privileged access by irrelevant speech to short-term memory: The role of changing state. The Quarterly Journal of Experimental Psychology, 44(4), 645-669.
doi: 10.1080/14640749208401304URL
[24] Kahneman, D. (1973). Attention and effort (Vol. 1063). Englewood Cliffs, NJ: Prentice-Hall.
[25] Kehler, A. (2004). Discourse coherence. In L. R. Horn & G. Ward (Eds.), The handbook of pragmatics (pp.241-265). Oxford, UK: Blackwell Publishing.
[26] Li, X., Bai X. J., & Yan G. L. (2011). The role of word boundary and frequency during Chinese reading. Studies of Psychology and Behavior, 9(2), 133-139.
[李馨, 白学军, 闫国利. (2011). 词边界信息和词频在汉语阅读中的作用. 心理与行为研究, 9(2), 133-139.]
[27] Ma, X., Liu, J., Liu, Y., Tao, Y., Zhang, Q. Y., & Chen, R. (2015). Effect of background music on Chinese and English reading comprehension. Studies of Psychology and Behavior, 13(4), 472-478.
[马谐, 刘佳, 刘艳, 陶云, 张秋月, 陈睿. (2015). 背景音乐对中—英文阅读理解的影响效应. 心理与行为研究, 13(4), 472-478.]
[28] Marsh, J. E., Hughes, R. W., & Jones, D. M. (2008). Auditory distraction in semantic memory: A process-based approach. Journal of Memory and Language, 58(3), 682-700.
doi: 10.1016/j.jml.2007.05.002URL
[29] Marsh, J. E., Hughes, R. W., & Jones, D. M. (2009). Interference by process, not content, determines semantic auditory distraction. Cognition, 110(1), 23-38.
doi: 10.1016/j.cognition.2008.08.003pmid: 19081558
[30] Marsh, J. E., Perham, N., Sörqvist, P., & Jones, D. M. (2014). Boundaries of semantic distraction: Dominance and lexicality act at retrieval. Memory & Cognition, 42(8), 1285-1301.
[31] Martin, R. C., Wogalter, M. S., & Forlano, J. G. (1988). Reading comprehension in the presence of unattended speech and music. Journal of Memory and Language, 27(4), 382-398.
doi: 10.1016/0749-596X(88)90063-0URL
[32] Meng, Z., Lan, Z., Yan, G., Marsh, J. E., Liversedge, S. P. (2020). Task demands modulate the effects of speech on text processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(10), 1892-1905.
[33] Meng, Z., & Yan, G. L. (2018). Mechanism of the irrelevant speech effect in reading: Is the interference determined by content, or process?. Advances in Psychological Science, 26(2), 262-269.
doi: 10.3724/SP.J.1042.2018.00262URL
[孟珠, 闫国利. (2018). 阅读任务中无关言语效应的作用机制: 干扰基于内容还是过程? 心理科学进展, 26(2), 262-269.]
[34] O’Brien, E. J., & Cook, A. E. (2015). Models of discourse comprehension. In A. Pollatsek & R. Treiman (Eds.), The Oxford handbook of reading (pp.217-231). New York, USA: Oxford University Press.
[35] Oswald, C. J. P., Tremblay, S., & Jones, D. M. (2000). Disruption of comprehension by the meaning of irrelevant sound. Memory, 8(5), 345-350.
pmid: 11045242
[36] Peng, D. L. (2004). Cognitive processing of the Chinese language and its neural mechanism. Contemporary Linguistics, 6(4), 302-320.
[彭聃龄. (2004). 汉语信息加工及其认知神经机制的研究——20年研究工作的回顾. 当代语言学, 6(4), 302-320.]
[37] Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The Quarterly Journal of Experimental Psychology, 62(8), 1457-1506.
[38] Rayner, K., Pollatsek, A., Ashby, J., & Clifton, C. J. (2012). Psychology of reading (2nd ed.). New York, USA: Psychology Press.
[39] R Development Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
[40] Robert, G., & Hockey, J. (1997). Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework. Biological Psychology, 45(1-3),73-93.
doi: 10.1016/S0301-0511(96)05219-2URL
[41] Salamé, P., & Baddeley, A. (1982). Disruption of short-term memory by unattended speech: Implications for the structure of working memory. Journal of Verbal Learning and Verbal Behavior, 21(2), 150-164.
doi: 10.1016/S0022-5371(82)90521-7URL
[42] Salamé, P., & Baddeley, A. (1987). Noise, unattended speech and short-term memory. Ergonomics, 30(8), 1185-1194.
[43] Salamé, P., & Baddeley, A. (1989). Effects of background music on phonological short-term memory. The Quarterly Journal of Experimental Psychology, 41(1), 107-122.
doi: 10.1080/14640748908402355URL
[44] Ünal, A. B., Steg, L., & Epstude, K. (2012). The influence of music on mental effort and driving performance. Accident Analysis & Prevention, 48(9), 271-278.
doi: 10.1016/j.aap.2012.01.022URL
[45] Vasilev, M. R., Kirkby, J. A., & Bernhard, A. (2018). Auditory distraction during reading: A Bayesian meta-analysis of a continuing controversy. Perspectives on Psychological Science, 13(5), 567-597.
doi: 10.1177/1745691617747398pmid: 29958067
[46] Vasilev, M. R., Liversedge, S. P., Rowan, D., Kirkby, J. A., & Angele, B. (2019). Reading is disrupted by intelligible background speech: Evidence from eye-tracking. Journal of Experimental Psychology: Human Perception and Performance, 45(11), 1-93.
doi: 10.1037/xhp0000578URL
[47] Vasilev, M. R., Parmentier, F. B. R., Angele, B., & Kirkby, J. A. (2019). Distraction by deviant sounds during reading: An eye-movement study. Quarterly Journal of Experimental Psychology, 72(7), 1863-1875.
[48] Venetjoki, N., Kaarlela-Tuomaala, A., Keskinen, E., & Hongisto, V. (2006). The effect of speech and speech intelligibility on task performance. Ergonomics, 49(11), 1068-1091.
[49] Wickens, C. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159-177.
doi: 10.1080/14639220210123806URL
[50] Wolf, F., & Gibson, E. (2005). Representing discourse coherence: A corpus-based study. Computational Linguistics, 31(2), 249-287.
doi: 10.1162/0891201054223977URL
[51] Yan, G., Meng, Z., Liu, N., He, L., & Paterson, K. B. (2017). Effects of irrelevant background speech on eye movements during reading. The Quarterly Journal of Experimental Psychology, 71(6), 1270-1275.
[52] Yan, G. L., Fu, G., & Bai., X. J. (2008). The perceptual span and eye movements in reading Chinese materials of different degrees of difficulty. Journal of Psychological Science, 31(6), 1287-1290.
[闫国利, 伏干, 白学军. (2008). 不同难度阅读材料对阅读知觉广度影响的眼动研究. 心理科学. 31(6), 1287-1290.]
[53] Yan, G. L., Xiong, J. P., Zang, C. L., Yu, L. L., Cui, l., & Bai, X. J. (2013). Review of eye-movement measures in reading research. Advances in Psychological Science, 21(4), 589-605.
doi: 10.3724/SP.J.1042.2013.00589URL
[闫国利, 熊建萍, 臧传丽, 余莉莉, 崔磊, 白学军. (2013). 阅读研究中的主要眼动指标评述. 心理科学进展, 21(4), 589-605.]




[1]张瑞, 王振华, 王小娟, 杨剑峰. 汉字识别中亚词汇语音和语义信息在N170上的神经适应[J]. 心理学报, 2021, 53(8): 807-820.
[2]李杰, 杨悦, 赵婧. 汉语发展性阅读障碍儿童视觉同时性加工技能子成分的发展及其与阅读的关系[J]. 心理学报, 2021, 53(8): 821-836.
[3]刘志方, 仝文, 张智君, 赵亚军. 语境预测性对阅读中字词加工过程的影响:眼动证据[J]. 心理学报, 2020, 52(9): 1031-1047.
[4]杨帆, 隋雪, 李雨桐. 中文阅读中长距离回视引导机制的眼动研究[J]. 心理学报, 2020, 52(8): 921-932.
[5]张慢慢, 臧传丽, 徐宇峰, 白学军, 闫国利. 快速与慢速读者的中央凹加工对副中央凹预视的影响[J]. 心理学报, 2020, 52(8): 933-945.
[6]高晓雷, 李晓伟, 孙敏, 白学军, 高蕾. 藏语阅读中中央凹词频效应及对副中央凹预视效应的影响[J]. 心理学报, 2020, 52(10): 1143-1155.
[7]陈红君, 赵英, 伍新春, 孙鹏, 谢瑞波, 冯杰. 小学儿童词汇知识与阅读理解的关系:交叉滞后研究[J]. 心理学报, 2019, 51(8): 924-934.
[8]梁菲菲, 马杰, 李馨, 连坤予, 谭珂, 白学军. 发展性阅读障碍儿童阅读中的眼跳定位缺陷:基于新词学习的实验证据[J]. 心理学报, 2019, 51(7): 805-815.
[9]白学军, 马杰, 李馨, 连坤予, 谭珂, 杨宇, 梁菲菲. 发展性阅读障碍儿童的新词习得及其改善[J]. 心理学报, 2019, 51(4): 471-483.
[10]周蕾, 李爱梅, 张磊, 李纾, 梁竹苑. 风险决策和跨期决策的过程比较:以确定效应和即刻效应为例[J]. 心理学报, 2019, 51(3): 337-352.
[11]马利军, 马云霄, 何晓清, 刘海涛, 张静宇. 相对熟悉度和同音线索在谐音型歇后语理解中的作用[J]. 心理学报, 2019, 51(12): 1306-1317.
[12]刘璐, 闫国利. 聋人阅读中的副中央凹视觉注意增强效应——来自消失文本的证据[J]. 心理学报, 2018, 50(7): 715-726.
[13]程亚华, 王健, 伍新春. 小学低年级儿童汉语语素意识在阅读理解中的 作用:字词阅读流畅性的中介效应[J]. 心理学报, 2018, 50(4): 413-425.
[14]王永胜, 赵冰洁, 陈茗静, 李馨, 闫国利, 白学军. 中央凹加工负荷与副中央凹信息在汉语阅读眼跳目标选择中的作用[J]. 心理学报, 2018, 50(12): 1336-1345.
[15]高淇, 白学军. 中英流行背景音乐 对大学生中英词汇记忆的影响[J]. 心理学报, 2018, 50(1): 1-8.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4972
相关话题/阅读 指标 心理 实验 中央