删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

冲突水平的变化诱发冲突适应

本站小编 Free考研考试/2022-01-01

张孟可, 李晴, 尹首航, 陈安涛()
西南大学心理学部, 认知与人格教育部重点实验室, 重庆 400715
收稿日期:2020-02-24出版日期:2021-02-25发布日期:2020-12-29
通讯作者:陈安涛E-mail:xscat@swu.edu.cn

基金资助:国家自然科学基金项目(31771254);中央高校基本科研业务费专项资金(SWU1609106);中央高校基本科研业务费专项资金(SWU1709107);中央高校基本科研业务费专项资金(SWU1909567)

Changes in the level of conflict trigger conflict adaptation

ZHANG Mengke, LI Qing, YIN Shouhang, CHEN Antao()
Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
Received:2020-02-24Online:2021-02-25Published:2020-12-29
Contact:CHEN Antao E-mail:xscat@swu.edu.cn






摘要/Abstract


摘要: 冲突适应是重要的认知控制现象, 反映了认知控制的动态过程。然而, 目前为止对于冲突水平上的差异能否诱发冲突适应尚不清楚。本研究采用字母Flanker的变式, 通过改变目标-分心物的一致性操纵冲突水平, 探究冲突水平的变化对认知控制调整的影响。结果发现被试的反应时间随冲突水平的提高而增加; 而且先前试次的一致性影响当前试次的干扰效应, 无冲突和低冲突、无冲突和高冲突、低冲突和高冲突条件之间均出现了典型的冲突适应。本研究结果表明, 除了冲突的有无, 冲突水平的变化也能诱发冲突适应, 支持更大的冲突驱动更强的认知控制, 而且冲突诱发的认知控制的功能可能通过注意聚焦实现。这一发现为冲突监测理论的注意调节机制提供了直接的支持证据, 对于促进冲突适应的相关研究具有重要意义。



图1字母Flanker任务流程图
图1字母Flanker任务流程图



图2试次一致性(无冲突、低冲突、高冲突)的平均反应时(A)和错误率(B); 先前试次一致性(无冲突、低冲突、高冲突)与当前试次一致性(无冲突、低冲突、高冲突)的平均反应时(C)和错误率(D)。(***p < 0.001)
图2试次一致性(无冲突、低冲突、高冲突)的平均反应时(A)和错误率(B); 先前试次一致性(无冲突、低冲突、高冲突)与当前试次一致性(无冲突、低冲突、高冲突)的平均反应时(C)和错误率(D)。(***p < 0.001)


表1先前试次一致性与当前试次一致性的反应时和错误率
先前试次一致性 当前试次一致性
无冲突 低冲突 高冲突
无冲突 701.58 (65.86) 763.27 (72.44) 772.42 (78.31)
3.36 (2.83) 4.03 (2.96) 3.68 (3.56)
低冲突 706.88 (67.91) 722.55 (70.05) 768.02 (71.22)
2.64 (2.72) 3.68 (4.94) 3.76 (4.68)
高冲突 724.61 (69.82) 755.61 (73.33) 758.88 (65.31)
3.09 (2.97) 3.94 (4.64) 3.77 (3.83)

表1先前试次一致性与当前试次一致性的反应时和错误率
先前试次一致性 当前试次一致性
无冲突 低冲突 高冲突
无冲突 701.58 (65.86) 763.27 (72.44) 772.42 (78.31)
3.36 (2.83) 4.03 (2.96) 3.68 (3.56)
低冲突 706.88 (67.91) 722.55 (70.05) 768.02 (71.22)
2.64 (2.72) 3.68 (4.94) 3.76 (4.68)
高冲突 724.61 (69.82) 755.61 (73.33) 758.88 (65.31)
3.09 (2.97) 3.94 (4.64) 3.77 (3.83)


表2先前试次一致性与当前试次一致性的反应时的统计分析结果
交互作用 df F p ηp2 冲突适应模式
3 (无冲突、低冲突、高冲突) × 3 (无冲突、低冲突、高冲突) 4, 120 13.06*** <0.001 0.30
3 (无冲突、低冲突、高冲突) × 2 (无冲突、低冲突) 2, 60 19.70*** <0.001 0.40
2 (无冲突、低冲突) × 2 (无冲突、低冲突) 1, 30 35.43*** <0.001 0.54 经典
2 (无冲突、高冲突) × 2 (无冲突、低冲突) 1, 30 22.86*** <0.001 0.43 经典
2 (低冲突、高冲突) × 2 (无冲突、低冲突) 1, 30 3.55 0.069 0.11 反转趋势
3 (无冲突、低冲突、高冲突) × 2 (无冲突、高冲突) 2, 60 10.43*** <0.001 0.26
2 (无冲突、低冲突) × 2 (无冲突、高冲突) 1, 30 1.17 0.287 0.04
2 (无冲突、高冲突) × 2 (无冲突、高冲突) 1, 30 25.08*** <0.001 0.46 经典
2 (低冲突、高冲突) × 2 (无冲突、高冲突) 1, 30 9.90** 0.004 0.25 经典
3 (无冲突、低冲突、高冲突) × 2 (低冲突、高冲突) 2, 60 11.06*** <0.001 0.27
2 (无冲突、低冲突) × 2 (低冲突、高冲突) 1, 30 11.97** 0.002 0.29 反转
2 (无冲突、高冲突) × 2 (低冲突、高冲突) 1, 30 <1 0.529 0.01
2 (低冲突、高冲突) × 2 (低冲突、高冲突) 1, 30 20.22*** <0.001 0.40 经典

表2先前试次一致性与当前试次一致性的反应时的统计分析结果
交互作用 df F p ηp2 冲突适应模式
3 (无冲突、低冲突、高冲突) × 3 (无冲突、低冲突、高冲突) 4, 120 13.06*** <0.001 0.30
3 (无冲突、低冲突、高冲突) × 2 (无冲突、低冲突) 2, 60 19.70*** <0.001 0.40
2 (无冲突、低冲突) × 2 (无冲突、低冲突) 1, 30 35.43*** <0.001 0.54 经典
2 (无冲突、高冲突) × 2 (无冲突、低冲突) 1, 30 22.86*** <0.001 0.43 经典
2 (低冲突、高冲突) × 2 (无冲突、低冲突) 1, 30 3.55 0.069 0.11 反转趋势
3 (无冲突、低冲突、高冲突) × 2 (无冲突、高冲突) 2, 60 10.43*** <0.001 0.26
2 (无冲突、低冲突) × 2 (无冲突、高冲突) 1, 30 1.17 0.287 0.04
2 (无冲突、高冲突) × 2 (无冲突、高冲突) 1, 30 25.08*** <0.001 0.46 经典
2 (低冲突、高冲突) × 2 (无冲突、高冲突) 1, 30 9.90** 0.004 0.25 经典
3 (无冲突、低冲突、高冲突) × 2 (低冲突、高冲突) 2, 60 11.06*** <0.001 0.27
2 (无冲突、低冲突) × 2 (低冲突、高冲突) 1, 30 11.97** 0.002 0.29 反转
2 (无冲突、高冲突) × 2 (低冲突、高冲突) 1, 30 <1 0.529 0.01
2 (低冲突、高冲突) × 2 (低冲突、高冲突) 1, 30 20.22*** <0.001 0.40 经典







[1] Algom, D., & Chajut, E. (2019). Reclaiming the Stroop effect back from control to input-driven attention and perception. Frontiers in Psychology, 10, 1683.
doi: 10.3389/fpsyg.2019.01683URLpmid: 31428008
[2] Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356-366.
[3] Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652.
URLpmid: 11488380
[4] Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539-546.
doi: 10.1016/j.tics.2004.10.003URLpmid: 15556023
[5] Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature, 402(6758), 179-181.
doi: 10.1038/46035URLpmid: 10647008
[6] Braem, S., Bugg, J. M., Schmidt, J. R., Crump, M. J. C., Weissman, D. H., Notebaert, W., & Egner, T. (2019). Measuring adaptive control in conflict tasks. Trends in Cognitive Sciences, 23(9), 769-783.
doi: 10.1016/j.tics.2019.07.002URLpmid: 31331794
[7] Chiu, Y. -C., & Egner, T. (2019). Cortical and subcortical contributions to context-control learning. Neuroscience & Biobehavioral Reviews, 99, 33-41.
doi: 10.1016/j.neubiorev.2019.01.019URLpmid: 30685484
[8] Clayson, P. E., & Larson, M. J. (2011). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49(7), 1953-1961.
doi: 10.1016/j.neuropsychologia.2011.03.023URLpmid: 21435347
[9] Danielmeier, C., Wessel, J. R., Steinhauser, M., & Ullsperger, M. (2009). Modulation of the error-related negativity by response conflict. Psychophysiology, 46(6), 1288-1298.
doi: 10.1111/j.1469-8986.2009.00860.xURLpmid: 19572907
[10] Dignath, D., Johannsen, L., Hommel, B., & Kiesel, A. (2019). Reconciling cognitive-control and episodic-retrieval accounts of sequential conflict modulation: Binding of control-states into event-files. Journal of Experimental Psychology: Human Perception and Performance, 45(9), 1265-1270.
doi: 10.1037/xhp0000673URLpmid: 31380673
[11] Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain. Trends in Cognitive Sciences, 12(10), 374-380.
doi: 10.1016/j.tics.2008.07.001URLpmid: 18760657
[12] Egner, T. (2014). Creatures of habit (and control): A multi-level learning perspective on the modulation of congruency effects. Frontiers in Psychology, 5, 1247.
URLpmid: 25414679
[13] Egner, T., Delano, M., & Hirsch, J. (2007). Separate conflict-specific cognitive control mechanisms in the human brain. NeuroImage, 35(2), 940-948.
doi: 10.1016/j.neuroimage.2006.11.061URLpmid: 17276088
[14] Egner, T., Jamieson, G., & Gruzelier, J. (2005). Hypnosis decouples cognitive control from conflict monitoring processes of the frontal lobe. NeuroImage, 27(4), 969-978.
URLpmid: 15964211
[15] Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics, 25(4), 249-263.
URLpmid: 461085
[16] Eriksen, C. W., & ST., James, J., D. (1986). Visual attention within and around the field of focal attention: A zoom lens model. Perception & Psychophysics, 40(4), 225-240.
doi: 10.3758/bf03211502URLpmid: 3786090
[17] Flowers, J. H. (1980). Response priming effects in a digit naming task as a function of target-noise separation. Bulletin of the Psychonomic Society, 16(6), 443-446.
[18] Forster, S. E., Carter, C. S., Cohen, J. D., & Cho, R. Y. (2011). Parametric manipulation of the conflict signal and control-state adaptation. Journal of Cognitive Neuroscience, 23(4), 923-935.
doi: 10.1162/jocn.2010.21458URLpmid: 20146615
[19] Funes, M. J., Lupiá?ez, J., & Humphreys, G. (2010). Analyzing the generality of conflict adaptation effects. Journal of Experimental Psychology: Human Perception and Performance, 36(1), 147-161.
doi: 10.1037/a0017598URLpmid: 20121301
[20] Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480-506.
doi: 10.1037/0096-3445.121.4.480URL
[21] Grundy, J. G., & Shedden, J. M. (2014). A role for recency of response conflict in producing the bivalency effect. Psychological Research, 78(5), 679-691.
doi: 10.1007/s00426-013-0520-xURLpmid: 24146081
[22] Kerns, J. G. (2006). Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task. NeuroImage, 33(1), 399-405.
doi: 10.1016/j.neuroimage.2006.06.012URLpmid: 16876434
[23] Kerns, J. G., Cohen, J. D., MacDonald III, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023-1026.
URLpmid: 14963333
[24] Kim, C., Chung, C., & Kim, J. (2010). Multiple cognitive control mechanisms associated with the nature of conflict. Neuroscience Letters, 476(3), 156-160.
doi: 10.1016/j.neulet.2010.04.019URLpmid: 20399838
[25] Kim, C., Kroger, J. K., & Kim, J. (2011). A functional dissociation of conflict processing within anterior cingulate cortex. Human Brain Mapping, 32(2), 304-312.
doi: 10.1002/hbm.21020URLpmid: 21229616
[26] Liu, P. D., Chen, A. T., Li, C., Li, H., & West, R. (2012). Conflict adaptation is reflected by response interference. Journal of Cognitive Psychology, 24(4), 457-467.
doi: 10.1080/20445911.2011.651080URL
[27] Liu, P. -D., Yang, W. -J., Tian, X., & Chen, A. -T. (2012). An overview of current studies about the conflict adaptation effect. Advances in Psychological Science, 20(4), 532-541.
[ 刘培朵, 杨文静, 田夏, 陈安涛. (2012). 冲突适应效应研究述评. 心理科学进展, 20(4), 532-541.]
[28] Mayr, U., & Awh, E. (2009). The elusive link between conflict and conflict adaptation. Psychological Research, 73(6), 794-802.
doi: 10.1007/s00426-008-0191-1URLpmid: 19034501
[29] Notebaert, W., Gevers, W., Verbruggen, F., & Liefooghe, B. (2006). Top-down and bottom-up sequential modulations of congruency effects. Psychonomic Bulletin & Review, 13(1), 112-117.
doi: 10.3758/bf03193821URLpmid: 16724777
[30] Notebaert, W., & Verguts, T. (2006). Stimulus conflict predicts conflict adaptation in a numerical flanker task. Psychonomic Bulletin & Review, 13(6), 1078-1084.
doi: 10.3758/bf03213929URLpmid: 17484439
[31] Notebaert, W., & Verguts, T. (2011). Conflict and error adaptation in the Simon task. Acta Psychologica, 136(2), 212-216.
doi: 10.1016/j.actpsy.2010.05.006URLpmid: 21420518
[32] Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1993). Correlations between locus coeruleus (LC) neural activity, pupil diameter and behavior in monkey support a role of LC in attention. Society for Neuroscience Abstracts, 19, 974.
[33] Rey-Mermet, A., & Meier, B. (2014). More conflict does not trigger more adjustment of cognitive control for subsequent events: A study of the bivalency effect. Acta Psychologica, 145, 111-117.
doi: 10.1016/j.actpsy.2013.11.005URLpmid: 24333810
[34] Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643-662.
doi: 10.1037/h0054651URL
[35] Takezawa, T., & Miyatani, M. (2005). Quantitative relation between conflict and response inhibition in the flanker task. Psychological Reports, 97(2), 515-526.
doi: 10.2466/pr0.97.2.515-526URLpmid: 16342579
[36] Ullsperger, M., Bylsma, L. M., & Botvinick, M. M. (2005). The conflict adaptation effect: It’s not just priming. Cognitive, Affective, & Behavioral Neuroscience, 5(4), 467-472.
[37] Verbruggen, F., Notebaert, W., Liefooghe, B., & Vandierendonck, A. (2006). Stimulus- and response-conflict-induced cognitive control in the flanker task. Psychonomic Bulletin & Review, 13(2), 328-333.
doi: 10.3758/bf03193852URLpmid: 16893003
[38] Verguts, T., & Notebaert, W. (2008). Hebbian learning of cognitive control: Dealing with specific and nonspecific adaptation. Psychological Review, 115(2), 518-525.
doi: 10.1037/0033-295X.115.2.518URLpmid: 18426302
[39] Verguts, T., & Notebaert, W. (2009). Adaptation by binding: A learning account of cognitive control. Trends in Cognitive Science, 13(6), 252-257.
doi: 10.1016/j.tics.2009.02.007URL
[40] Weissman, D. H., Egner, T., Hawks, Z., & Link, J. (2015). The congruency sequence effect emerges when the distracter precedes the target. Acta Psychologica, 156, 8-21.
doi: 10.1016/j.actpsy.2015.01.003URLpmid: 25616120
[41] Weissman, D. H., Jiang, J., & Egner, T. (2014). Determinants of congruency sequence effects without learning and memory confounds. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 2022-2037.
doi: 10.1037/a0037454URLpmid: 25089574
[42] Wendt, M., Kiesel, A., Geringswald, F., Purmann, S., & Fischer, R. (2014). Attentional adjustment to conflict strength: Evidence from the effects of manipulating flanker-target SOA on response times and prestimulus pupil size. Experimental Psychology, 61(1), 55-67.
doi: 10.1027/1618-3169/a000227URLpmid: 24149239




[1]黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37.
[2]孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406.
[3]崔诣晨, 王沛, 崔亚娟. 知觉冲突印象形成的认知控制策略:以刻板化信息与反刻板化信息为例[J]. 心理学报, 2019, 51(10): 1157-1170.
[4]王宴庆,陈安涛,胡学平,尹首航. 奖赏通过增强信号监测提升认知控制[J]. 心理学报, 2019, 51(1): 48-57.
[5]胡岑楼;张豹;黄赛. 无关长时记忆表征能否引导视觉注意选择?[J]. 心理学报, 2017, 49(5): 590-601.
[6]张豹;胡岑楼;黄赛. 认知控制在工作记忆表征引导注意中的作用:来自眼动的证据[J]. 心理学报, 2016, 48(9): 1105-1118.
[7]刘聪;焦鲁;孙逊;王瑞明. 语言转换对非熟练双语者不同认知控制成分的即时影响[J]. 心理学报, 2016, 48(5): 472-481.
[8]王佳莹; 缴润凯; 张明. 任务设置影响负相容效应的机制 ——自上而下认知控制对阈下启动信息加工的影响[J]. 心理学报, 2016, 48(11): 1370-1378.
[9]刘晓瑜;何朝丹;陈俊;邓沁丽. 熟练粤-普双言者的双言认知控制机制 ——来自双任务切换范式的行为研究证据[J]. 心理学报, 2015, 47(4): 439-454.
[10]蒋军;向玲;张庆林;陈安涛. 冲突适应独立于意识:来自行为和ERP的证据[J]. 心理学报, 2014, 46(5): 581-592.
[11]窦伟伟;郑希付;杨慧芳;王俊芳;李悦;俄小天;陈倩倩. 认知分心的强度对创伤性信息加工的影响[J]. 心理学报, 2014, 46(5): 656-665.
[12]徐雷;王丽君;赵远方;谭金凤;陈安涛. 阈下奖励调节认知控制的权衡[J]. 心理学报, 2014, 46(4): 459-466.
[13]王振宏;刘亚;蒋长好. 不同趋近动机强度积极情绪对认知控制的影响[J]. 心理学报, 2013, 45(5): 546-555.
[14]唐丹丹,刘培朵,陈安涛. 冲突观察能诱发冲突适应[J]. 心理学报, 2012, 44(3): 295-303.
[15]刘志方,张智君,赵亚军. 汉语阅读中眼跳目标选择单元以及词汇加工方式:来自消失文本的实验证据[J]. 心理学报, 2011, 43(06): 608-618.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4873
相关话题/心理 控制 冲突 信息 中央