删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

经前期综合征与奖赏进程失调——来自脑电的证据

本站小编 Free考研考试/2022-01-01

侯璐璐, 陈莅蓉, 周仁来()
南京大学心理学系, 南京 210023
收稿日期:2019-09-06出版日期:2020-06-25发布日期:2020-04-22
通讯作者:周仁来E-mail:rlzhou@nju.edu.cn

基金资助:* 江苏高校哲学社会科学重点研究基地重大项目(2015JDXM001);南京大学双创示范基地重点项目(SCJD0406);南京大学博士研究生创新创意计划(CXCY18-06)

Altered reward processing in women with premenstrual syndrome: Evidence from ERPs and time-frequency analysis

HOU Lulu, CHEN Lirong, ZHOU Renlai()
Department of Psychology, Nanjing University, Nanjing 210023, China
Received:2019-09-06Online:2020-06-25Published:2020-04-22
Contact:ZHOU Renlai E-mail:rlzhou@nju.edu.cn






摘要/Abstract


摘要: 研究表明, 经前期综合征(Premenstrual syndromes, PMS)女性的情绪平衡性存在问题, 而现有研究多从负性情绪上升的角度考察PMS的发病机制, 而对其正性情绪缺损的关注不足。鉴于正性情绪与奖赏进程密切相关, 本研究试图从奖赏进程失调的角度考察PMS女性与健康女性的差异以及该差异是否存在阶段特异性的问题, 以期从正性情绪缺损的角度揭示其发病机制。具体而言, 分别选取PMS女性与健康女性23名和22名, 考察两组被试在黄体晚期(即经前期)和卵泡早期(即经后期)正性情绪以及完成赌博任务时的脑电数据时域和频域的差异。主观问卷结果显示, PMS女性的愉快和平静情绪低于健康女性, 并且情绪平衡性也低于健康女性, 但无明显的阶段特异性。时域分析结果显示, PMS组在经前期收到奖赏反馈后奖赏正波(reward positivity, RewP)的波幅和差异波(即奖赏条件和惩罚条件下的差值)的波幅均低于健康女性, 进一步的相关分析结果显示, 对于PMS组来说, 经前期奖赏条件下的RewP波幅和差异波波幅与经前期的情绪平衡性显著正相关。频域分析的结果则发现PMS组在经前期奖赏条件下的θ频段(4~7 Hz, 250~400 ms)能量低于健康组。研究表明, PMS女性在经前期的奖赏加工进程存在异常, 表现为对奖赏反馈的预期增强, 而在收到奖赏反馈后又出现了钝化反应, 且奖赏进程的失调与情绪平衡性相关。本研究为理解PMS女性奖赏进程失调的动态加工时程和神经震荡特征及其与情绪平衡性的关系提供了初步的神经生理证据。



图1单一试次流程图
图1单一试次流程图


表1时域分析和频域分析每种条件有效试次数(M ± SD)
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件(次) 19.00 ± 1.34 19.30 ± 1.01 19.50 ± 0.74 19.41 ± 0.80
惩罚条件(次) 19.08 ± 1.50 19.08 ± 1.12 18.73 ± 1.42 19.32 ± 1.21

表1时域分析和频域分析每种条件有效试次数(M ± SD)
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件(次) 19.00 ± 1.34 19.30 ± 1.01 19.50 ± 0.74 19.41 ± 0.80
惩罚条件(次) 19.08 ± 1.50 19.08 ± 1.12 18.73 ± 1.42 19.32 ± 1.21


表2人口学变量(M ± SD)
变量 PMS组(n = 23) 健康组(n = 22) t
年龄(岁) 21.35 ± 2.35 21.45± 1.87 -0.17
BMI (kg/m2) 19.97 ± 1.44 19.88 ±1.76 0.20
月经持续时间(天) 5.48 ± 0.99 5.50 ± 1.14 -0.07
月经周期长度(天) 30.35 ± 2.77 29.50 ± 3.22 0.95

表2人口学变量(M ± SD)
变量 PMS组(n = 23) 健康组(n = 22) t
年龄(岁) 21.35 ± 2.35 21.45± 1.87 -0.17
BMI (kg/m2) 19.97 ± 1.44 19.88 ±1.76 0.20
月经持续时间(天) 5.48 ± 0.99 5.50 ± 1.14 -0.07
月经周期长度(天) 30.35 ± 2.77 29.50 ± 3.22 0.95


表3主观问卷和激素结果(M ± SD)
量表/激素 PMS (n = 23) 健康组(n = 22) F
经前期 经后期 经前期 经后期 组别 阶段 组别×阶段
PANAS-NA 25.30 ± 5.70 25.35 ± 4.18 21.14 ± 4.02 21.32 ± 4.18 14.46*** 0.02 0.01
PANAS-PA 23.39 ± 5.91 23.78 ± 4.95 21.45 ± 4.53 21.73 ± 5.35 2.33 0.16 0.01
PANAS-AB -1.91 ± 3.26 -1.57 ± 4.04 0.32 ± 4.44 0.41 ± 4.44 4.18* 0.11 0.04
BES-愉悦度 4.65 ± 1.70 4.65 ± 1.97 5.77 ± 1.41 5.68 ± 1.09 10.06** 0.02 0.02
BES-唤醒度 4.74 ± 1.60 4.65 ± 1.47 4.91 ± 1.11 5.05 ± 1.33 0.81 0.01 0.17
BES-愉快 5.17 ± 1.85 4.78 ± 1.86 5.86 ± 1.39 5.68 ± 1.73 4.15* 0.74 0.10
BES-愤怒 4.52 ± 1.62 4.65 ± 1.92 3.22 ± 1.41 3.50 ± 1.37 10.35** 0.49 0.06
BES-恐惧 4.34 ± 1.72 4.09 ± 2.09 3.36 ± 1.68 2.82 ± 1.40 7.42** 1.64 0.20
BES-悲伤 5.04 ± 1.80 4.87 ± 1.91 4.00 ± 1.77 3.45 ± 1.82 8.42** 1.10 0.29
BES-平静 4.96 ± 1.80 4.35 ± 1.87 5.55 ± 1.44 5.36 ± 1.94 3.17+ 2.03 0.59
BES-厌恶 4.87 ± 1.63 4.39 ± 2.15 3.45 ± 1.68 3.59 ± 1.99 6.64* 0.23 0.74
BES-惊奇 4.61 ± 1.67 4.04 ± 1.94 4.05 ± 1.91 4.36 ± 1.76 0.08 0.13 1.68
SHAPS 25.65 ± 4.76 25.70 ± 5.20 22.86 ± 4.38 23.55 ± 5.84 3.52+ 0.24 0.18
雌二醇 135.45 ± 110.80 110.58 ± 77.44 141.64 ± 85.92 111.51 ± 78.06 0.51 1.97 0.07
孕酮 821.27 ± 631.21 434.16 ± 260.53 778.60 ± 420.90 435.79 ± 299.38 0.08 20.16*** 0.20

表3主观问卷和激素结果(M ± SD)
量表/激素 PMS (n = 23) 健康组(n = 22) F
经前期 经后期 经前期 经后期 组别 阶段 组别×阶段
PANAS-NA 25.30 ± 5.70 25.35 ± 4.18 21.14 ± 4.02 21.32 ± 4.18 14.46*** 0.02 0.01
PANAS-PA 23.39 ± 5.91 23.78 ± 4.95 21.45 ± 4.53 21.73 ± 5.35 2.33 0.16 0.01
PANAS-AB -1.91 ± 3.26 -1.57 ± 4.04 0.32 ± 4.44 0.41 ± 4.44 4.18* 0.11 0.04
BES-愉悦度 4.65 ± 1.70 4.65 ± 1.97 5.77 ± 1.41 5.68 ± 1.09 10.06** 0.02 0.02
BES-唤醒度 4.74 ± 1.60 4.65 ± 1.47 4.91 ± 1.11 5.05 ± 1.33 0.81 0.01 0.17
BES-愉快 5.17 ± 1.85 4.78 ± 1.86 5.86 ± 1.39 5.68 ± 1.73 4.15* 0.74 0.10
BES-愤怒 4.52 ± 1.62 4.65 ± 1.92 3.22 ± 1.41 3.50 ± 1.37 10.35** 0.49 0.06
BES-恐惧 4.34 ± 1.72 4.09 ± 2.09 3.36 ± 1.68 2.82 ± 1.40 7.42** 1.64 0.20
BES-悲伤 5.04 ± 1.80 4.87 ± 1.91 4.00 ± 1.77 3.45 ± 1.82 8.42** 1.10 0.29
BES-平静 4.96 ± 1.80 4.35 ± 1.87 5.55 ± 1.44 5.36 ± 1.94 3.17+ 2.03 0.59
BES-厌恶 4.87 ± 1.63 4.39 ± 2.15 3.45 ± 1.68 3.59 ± 1.99 6.64* 0.23 0.74
BES-惊奇 4.61 ± 1.67 4.04 ± 1.94 4.05 ± 1.91 4.36 ± 1.76 0.08 0.13 1.68
SHAPS 25.65 ± 4.76 25.70 ± 5.20 22.86 ± 4.38 23.55 ± 5.84 3.52+ 0.24 0.18
雌二醇 135.45 ± 110.80 110.58 ± 77.44 141.64 ± 85.92 111.51 ± 78.06 0.51 1.97 0.07
孕酮 821.27 ± 631.21 434.16 ± 260.53 778.60 ± 420.90 435.79 ± 299.38 0.08 20.16*** 0.20


表4奖赏实验范式行为数据(M ± SD)
指标 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
选择“f” (次) 21.65 ± 5.48 20.57 ± 5.74 21.82 ± 5.12 19.86 ± 3.91
选择“j” (次) 18.34 ± 5.48 19.43 ± 5.74 18.18 ± 5.12 20.14 ± 3.91
反应时(ms) 729.31 ± 407.18 628.71 ± 177.38 894.38 ± 567.78 751.59 ± 302.32

表4奖赏实验范式行为数据(M ± SD)
指标 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
选择“f” (次) 21.65 ± 5.48 20.57 ± 5.74 21.82 ± 5.12 19.86 ± 3.91
选择“j” (次) 18.34 ± 5.48 19.43 ± 5.74 18.18 ± 5.12 20.14 ± 3.91
反应时(ms) 729.31 ± 407.18 628.71 ± 177.38 894.38 ± 567.78 751.59 ± 302.32



图2健康组和PMS组在经前期和经后期的波形图与地形图, 其中地形图为差异波250~350 ms的平均地形图(为了方便显示, 图中差异波为惩罚条件-奖赏条件)。
图2健康组和PMS组在经前期和经后期的波形图与地形图, 其中地形图为差异波250~350 ms的平均地形图(为了方便显示, 图中差异波为惩罚条件-奖赏条件)。


表5PMS组和健康组在经前期和经后期奖赏、惩罚条件和差异波的平均波幅(M ± SD)
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件 18.36 ± 9.34 22.65 ± 8.13 24.25 ± 11.17 25.81 ± 11.36
惩罚条件 14.04 ± 8.30 15.85 ± 8.64 15.03 ± 9.93 17.74 ± 9.41
差异波 4.32 ± 3.84 6.81 ± 6.01 9.22 ± 7.16 8.07 ± 7.73

表5PMS组和健康组在经前期和经后期奖赏、惩罚条件和差异波的平均波幅(M ± SD)
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件 18.36 ± 9.34 22.65 ± 8.13 24.25 ± 11.17 25.81 ± 11.36
惩罚条件 14.04 ± 8.30 15.85 ± 8.64 15.03 ± 9.93 17.74 ± 9.41
差异波 4.32 ± 3.84 6.81 ± 6.01 9.22 ± 7.16 8.07 ± 7.73



图3PMS组经前期奖赏条件和差异波的平均波幅与PANAS-AB的相关, 差异波的波幅为奖赏条件-惩罚条件。
图3PMS组经前期奖赏条件和差异波的平均波幅与PANAS-AB的相关, 差异波的波幅为奖赏条件-惩罚条件。



图4健康组和PMS组在经前期和经后期θ频段能量差值的频谱图及其地形图(250~400 ms, 图中差值为惩罚条件-奖赏条件)
图4健康组和PMS组在经前期和经后期θ频段能量差值的频谱图及其地形图(250~400 ms, 图中差值为惩罚条件-奖赏条件)


表6PMS组和健康组在经前期和经后期奖赏、惩罚条件θ频段能量及其差值(M ± SD)
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件 0.98 ± 1.07 1.34 ± 1.26 1.85 ± 1.07 1.72 ± 1.21
惩罚条件 2.53 ± 2.59 2.46 ± 2.69 2.55 ± 2.08 2.96 ± 2.41
差值 -1.54 ± 1.74 -1.12 ± 1.61 -0.70 ± 1.69 -1.24 ± 1.68

表6PMS组和健康组在经前期和经后期奖赏、惩罚条件θ频段能量及其差值(M ± SD)
条件 PMS (n = 23) 健康组(n = 22)
经前期 经后期 经前期 经后期
奖赏条件 0.98 ± 1.07 1.34 ± 1.26 1.85 ± 1.07 1.72 ± 1.21
惩罚条件 2.53 ± 2.59 2.46 ± 2.69 2.55 ± 2.08 2.96 ± 2.41
差值 -1.54 ± 1.74 -1.12 ± 1.61 -0.70 ± 1.69 -1.24 ± 1.68







[1] Alheid, G. F . (2003). Extended amygdala and basal forebrain. Annals of the New York Academy of Sciences, 985(1), 185-205.
[2] Altemus, M . (2006). Sex differences in depression and anxiety disorders: Potential biological determinants. Hormones and Behavior, 50(4), 534-538.
doi: 10.1016/j.yhbeh.2006.06.031URL
[3] Altemus, M., Sarvaiya, N., & Epperson, C. N . (2014). Sex differences in anxiety and depression clinical perspectives. Frontiers in Neuroendocrinology, 35(3), 320-330.
doi: 10.1016/j.yfrne.2014.05.004URL
[4] Amaral, D. G., & Price, J. L . (1984). Amygdalo-cortical projections in the monkey (Macaca fascicularis). Journal of Comparative Neurology, 230(4), 465-496.
[5] Andreou, C., Kleinert, J., Steinmann, S., Fuger, U., Leicht, G., & Mulert, C . (2015). Oscillatory responses to reward processing in borderline personality disorder. The World Journal of Biological Psychiatry, 16(8), 575-586.
[6] Anisman, H., & Matheson, K . (2005). Stress, depression, and anhedonia: Caveats concerning animal models. Neuroscience and Biobehavioral Reviews, 29(4-5), 525-546.
doi: 10.1016/j.neubiorev.2005.03.007URL
[7] Anjum, F., Zehra, N., Haider, G., Rani, S., Siddique, A. A., & Munir, A. A . (2010). Attitudes towards menstruation among young women. Pakistan Journal of Medical Sciences, 26(3), 619-622.
[8] APA. (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th edition-text revision.
[9] Aron, A., Fisher, H., Mashek, D. J., Strong, G., Li, H., & Brown, L. L . (2005). Reward, motivation, and emotion systems associated with early-stage intense romantic love. Journal of Neurophysiology, 94(1), 327-337.
[10] Bancroft, J . (1993). The premenstrual syndrome-A reappraisal of the concept and the evidence. Psychological Medicine, 24, 1-47.
[11] Beck, A. T . (1967). Depression: Causes and treatment. Clinics in Geriatric Medicine, 14(4), 765-786.
[12] Beck, A. T., Epstein, N., Brown, G., & Steer, R. A . (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893-897.
[13] Belujon, P., & Grace, A. A . (2015). Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proceedings Biological Sciences, 282(1805), 20142516.
[14] Berridge, K. C., & Robinson, T. E . (2003). Parsing reward. Trends in Neurosciences, 26(9), 507-513.
[15] Blood, A. J., & Zatorre, R. J . (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11818-11823.
[16] Bogdan, R., & Pizzagalli, D. A . (2006). Acute stress reduces reward responsiveness: Implications for depression. Biological Psychiatry, 60(10), 1147-1154.
[17] Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D . (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624-652.
[18] Breslau, N . (2009). The epidemiology of trauma, PTSD, and other posttrauma disorders. Trauma, Violence, and Abuse, 10(3), 198-210.
[19] Bress, J. N., Foti, D., Kotov, R., Klein, D. N., & Hajcak, G . (2013). Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology, 50(1), 74-81.
doi: 10.1111/psyp.2013.50.issue-1URL
[20] Bress, J. N., Smith, E., Foti, D., Klein, D. N., & Hajcak, G . (2012). Neural response to reward and depressive symptoms in late childhood to early adolescence. Biological Psychology, 89(1), 156-162.
doi: 10.1016/j.biopsycho.2011.10.004URL
[21] Brunia, C. H. M., & Damen, E. J. P . (1988). Distribution of slow brain potentials related to motor preparation and stimulus anticipation in a time estimation task. Electroencephalography and Clinical Neurophysiology, 69(3), 234-243.
[22] Butler, P. D., Weiss, J. M., Stout, J. C., & Nemeroff, C. B . (1990). Corticotropin-releasing factor produces fear- enhancing and behavioral activating effects following infusion into the locus coeruleus. Journal of Neuroscience, 10(1), 176-183.
[23] Carey, R. J . (1986). An examination of parkinsonian versus anhedonia contributions to self-stimulation impairments induced by dopamine dysfunction. Behavioural Brain Research, 22(2), 117-125.
[24] Chang, C. H., & Grace, A. A . (2013). Amygdala β- noradrenergic receptors modulate delayed downregulation of dopamine activity following restraint. Journal of Neuroscience, 33(4), 1441-1450.
[25] Chang, C. H., & Grace, A. A . (2014). Amygdala-Ventral pallidum pathway decreases dopamine activity after chronic mild stress in rats. Biological Psychiatry, 76(3), 223-230.
[26] Chen, L., & Zhou, R . (2016, June). The deficiency of positive emotion for Females with premenstrual syndrome: Evidence from the late positive potential. Poster session presented at the annual meeting of the Organization for Human Brain Mapping, Geneva, Switzerland.
[27] Cohen, M. X . (2014). Analyzing neural time series data: Theory and practice. MIT press.
[28] Cohen, M. X., Elger, C. E., & Ranganath, C . (2007). Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 35(2), 968-978.
[29] Cona, G., Chiossi, F., di Tomasso, S., Pellegrino, G., Piccione, F., Bisiacchi, P., & Arcara, G . (2020). Theta and alpha oscillations as signatures of internal and external attention to delayed intentions: A magnetoencephalography (MEG) study. NeuroImage, 205, 116295.
[30] Craner, J. R., Sigmon, S. T., & Martinson, A. A . (2015). Self-focused attention in response to laboratory stressors among women with premenstrual disorders. Archives of Womens Mental Health, 18(4), 595-606.
[31] Davis, M . (1980). Neurochemical modulation of sensory- motor reactivity: Acoustic and tactile startle reflexes. Neuroscience and Biobehavioral Reviews, 4(2), 241-263.
[32] Delorme, A., & Makeig, S . (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.
[33] Direkvand-Moghadam, A., Sayehmiri, K., Delpisheh, A., & Sattar, K . (2014). Epidemiology of premenstrual syndrome (PMS)-A systematic review and meta-analysis study. Journal of Clinical and Diagnostic Research, 8(2), 106-109.
[34] Dreher, J.-C., Schmidt, P. J., Kohn, P., Furman, D., Rubinow, D., & Berman, K. F . (2007). Menstrual cycle phase modulates reward-related neural function in women. Proceedings of the National Academy of Sciences, 104(7), 2465-2470.
[35] Ducasse, D., Jaussent, I., Olié, E., Guillaume, S., Lopezcastroman, J., & Courtet, P . (2016). Personality traits of suicidality are associated with premenstrual syndrome and premenstrual dysphoric disorder in a suicidal women sample. Plos One, 11(2), e0148653.
[36] Due?as, J. L., Lete, I., Bermejo, R., Arbat, A., Pérezcampos, E., Martínezsalmeán, J., ... Coll, C . (2011). Prevalence of premenstrual syndrome and premenstrual dysphoric disorder in a representative cohort of Spanish women of fertile age. European Journal of Obstetrics and Gynecology and Reproductive Biology, 156(1), 72-77.
doi: 10.1016/j.ejogrb.2010.12.013URL
[37] Eggert, L., Kleinst?uber, M., Hiller, W., & Witth?ft, M . (2017). Emotional interference and attentional processing in premenstrual syndrome. Journal of Behavior Therapy and Experimental Psychiatry, 54, 77-87.
[38] Eggert, L., Witth?ft, M., Hiller, W., & Kleinst?uber, M . (2016). Emotion regulation in women with premenstrual syndrome (PMS): Explicit and implicit assessments. Cognitive Therapy and Research, 40(6), 747-763.
[39] Farage, M. A., Neill, S., & MacLean, A. B . (2009). Physiological changes associated with the menstrual cycle: A review. Obstetrical and Gynecological Survey, 64(1), 58-72.
doi: 10.1097/OGX.0b013e3181932a37URL
[40] Foti, D., & Hajcak, G . (2009). Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology, 81(1), 1-8.
doi: 10.1016/j.biopsycho.2008.12.004URL
[41] Fredrickson, B. L . (1998). What good are positive emotions? Review of General Psychology, 2(3), 300-319.
[42] Fredrickson, B. L., & Levenson, R. W . (1998). Positive emotions speed recovery from the cardiovascular sequelae of negative emotions. Cognition and Emotion, 12(2), 191-220.
[43] Fredrickson, B. L., Mancuso, R. A., Branigan, C., & Tugade, M. M . (2000). The undoing effect of positive emotions. Motivation and Emotion, 24(4), 237-258.
[44] Garamoni, G. L., Reynolds, C. F., Thase, M. E., Frank, E., & Fasiczka, A. L . (1992). Shifts in affective balance during cognitive therapy of major depression. Journal of Consulting and Clinical Psychology, 60(2), 260-266.
doi: 10.1037/0022-006X.60.2.260URL
[45] Garamoni, G. L., Reynolds III, C. F., Thase, M. E., Frank, E., Berman, S. R., & Fasiczka, A. L . (1991). The balance of positive and negative affects in major depression: A further test of the states of mind model. Psychiatry Research, 39(2), 99-108.
[46] Garcia-Sanchez, F., Martinez-Gras, I., Rodriguez-Jimenez, R., & Rubio, G . (2011). Prepulse inhibition of the startle response/reflex in neuropsychiatric disorders. Revista de Neurologia, 53(7), 422-432.
[47] Gingnell, M., Morell, A., Bannbers, E., Wikstr?m, J., & Poromaa, I. S . (2012). Menstrual cycle effects on amygdala reactivity to emotional stimulation in premenstrual dysphoric disorder. Hormones and Behavior, 62(4), 400-406.
doi: 10.1016/j.yhbeh.2012.07.005URL
[48] Hajihosseini, A., & Holroyd, C. B . (2013). Frontal midline theta and N 200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology, 50(6), 550-562.
doi: 10.1111/psyp.12040URL
[49] Hoffman, H. S., & Ison, J. R . (1980). Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychological Review, 87(2), 175-189.
doi: 10.1037/0033-295X.87.2.175URL
[50] Holroyd, C. B., & Coles, M. G. H . (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679-709.
doi: 10.1037/0033-295X.109.4.679URL
[51] Holroyd, C. B., & Krigolson, O. E . (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913-917.
[52] Holroyd, C. B., Pakzadvaezi, K. L., & Krigolson, O. E . (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688-697.
[53] Hu, L., Xiao, P., Zhang, Z. G., Mouraux, A., & Iannetti, G. D . (2014). Single-trial time-frequency analysis of electrocortical signals: Baseline correction and beyond. NeuroImage, 84(1), 876-887.
[54] Huang, A. C. W., & Hsiao, S . (2002). Haloperidol attenuates rewarding and aversively conditioned suppression of saccharin solution intake: Reevaluation of the anhedonia hypothesis of dopamine blocking. Behavioral Neuroscience, 116(116), 646-650.
[55] Huang, L., Yang, T. Z., & Ji, Z. M . (2003). Applicability of the positive and negative affect scale in Chinese. Chinese Mental Health Journal, 17(1), 54-56.
[ 黄丽, 杨廷忠, 季忠民 . (2003). 正性负性情绪量表的中国人群适用性研究. 中国心理卫生杂志, 17(1), 54-56.]
[56] Huang, Y., Zhou, R., Wu, M., Wang, Q., & Zhao, Y . (2014). Premenstrual syndrome is associated with blunted cortisol reactivity to the TSST. Stress, 18(2), 160-168.
[57] Kask, K., Gulinello, M., B?ckstr?m, T., Geyer, M. A., & Sundstr?m-Poromaa, I . (2008). Patients with premenstrual dysphoric disorder have increased startle response across both cycle phases and lower levels of prepulse inhibition during the late luteal phase of the menstrual cycle. Neuropsychopharmacology, 33(9), 2283-2290.
[58] Kessler, R. C., McGonagle, K. A., Nelson, C. B., Hughes, M., Swartz, M., & Blazer, D. G . (1994). Sex and depression in the national comorbidity survey. II: Cohort effects. Journal of Affective Disorders, 30(1), 15-26.
[59] Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M., & Nelson, C. B . (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry, 52(12), 1048-1060.
doi: 10.1001/archpsyc.1995.03950240066012URL
[60] Koydemir, S., ?im?ek, ?. F., Schütz, A., & Tipandjan, A . (2013). Differences in how trait emotional intelligence predicts life satisfaction: The role of affect balance versus social support in India and Germany. Journal of Happiness Studies, 14(1), 51-66.
doi: 10.1007/s10902-011-9315-1URL
[61] Kumar, P., Berghorst, L. H., Nickerson, L. D., Dutra, S. J., Goer, F. K., Greve, D. N., & Pizzagalli, D. A . (2014). Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience, 266, 1-12.
doi: 10.1016/j.neuroscience.2014.01.058URL
[62] Kumari, V., Konstantinou, J., Papadopoulos, A., Aasen, I., Poon, L., Halari, R., & Cleare, A. J . (2010). Evidence for a role of progesterone in menstrual cycle-related variability in prepulse inhibition in healthy young women. Neuropsychopharmacology, 3 5(4), 929-937.
[63] Liu, W. H., Wang, L. Z., Shang, H. R., Shen, Y., Li, Z., Cheung, E. F., & Chan, R. C . (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia, 53(4), 213-220.
doi: 10.1016/j.neuropsychologia.2013.11.023URL
[64] Liu, W. H., Wang, L. Z., Zhu, Y. H., Li, M. H., & Chan, R. C . (2012). Clinical utility of the Snaith-Hamilton pleasure scale in the Chinese settings. Bmc Psychiatry, 12(1), 184.
doi: 10.1186/1471-244X-12-184URL
[65] Liu, Y., Wang, Z., & Lü, W . (2013). Resilience and affect balance as mediators between trait emotional intelligence and life satisfaction. Personality and Individual Differences, 54(7), 850-855.
doi: 10.1016/j.paid.2012.12.010URL
[66] Luxton, D. D., Skopp, N. A., & Maguen, S . (2010). Gender differences in depression and PTSD symptoms following combat exposure. Depression and Anxiety, 27(11), 1027-1033.
doi: 10.1002/da.20730URL
[67] Marco-Pallares, J., Cucurell, D., Cunillera, T., García, R., Andrés-Pueyo, A., Münte, T. F., & Rodríguez-Fornells, A . (2008). Human oscillatory activity associated to reward processing in a gambling task. Neuropsychologia, 46(1), 241-248.
doi: 10.1016/j.neuropsychologia.2007.07.016URL
[68] Matsumoto, M., Matsumoto, K., Abe, H., & Tanaka, K . (2007). Medial prefrontal cell activity signaling prediction errors of action values. Nature Neuroscience, 10(5), 647-656.
doi: 10.1038/nn1890URL
[69] Metcalf, M. G., & Livesey, J. H . (1995). Distribution of positive moods in women with the premenstrual syndrome and in normal women. Journal of Psychosomatic Research, 39(5), 609-618.
doi: 10.1016/0022-3999(94)00167-7URL
[70] Moore, H., Rose, H. J., & Grace, A. A . (2001). Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology, 24(4), 410-419.
doi: 10.1016/S0893-133X(00)00188-3URL
[71] Morgan, J. K., Olino, T. M., Mcmakin, D. L., Ryan, N. D., & Forbes, E. E . (2013). Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiology of Disease, 52(4), 66-74.
doi: 10.1016/j.nbd.2012.03.039URL
[72] Mouraux, A., & Iannetti, G. D . (2008). Across-trial averaging of event-related EEG responses and beyond. Magnetic Resonance Imaging, 26(7), 1041-1054.
doi: 10.1016/j.mri.2008.01.011URL
[73] Mulligan, E. M., Nelson, B. D., Infantolino, Z. P., Luking, K. R., Sharma, R., & Hajcak, G . (2018). Effects of menstrual cycle phase on electrocortical response to reward and depressive symptoms in women. Psychophysiology, 55(12), e13268.
doi: 10.1111/psyp.2018.55.issue-12URL
[74] Murray, E. A . (2007). The amygdala, reward and emotion. Trends in Cognitive Sciences, 11(11), 489-497.
doi: 10.1016/j.tics.2007.08.013URL
[75] Nelson, B. D., Perlman, G., Klein, D. N., Kotov, R., & Hajcak, G . (2016). Blunted neural response to rewards as a prospective predictor of the development of depression in adolescent girls. American Journal of Psychiatry, 173(12), 1223-1230.
doi: 10.1176/appi.ajp.2016.15121524URL
[76] Nieuwenhuis, S., Slagter, H. A., von Geusau, N. J. A., Heslenfeld, D. J., & Holroyd, C. B . (2005). Knowing good from bad: Differential activation of human cortical areas by positive and negative outcomes. European Journal of Neuroscience, 21(11), 3161-3168.
doi: 10.1111/ejn.2005.21.issue-11URL
[77] Oliveira, F. T. P., McDonald, J. J., & Goodman, D . (2007). Performance monitoring in the anterior cingulate is not all error related: Expectancy deviation and the representation of action-outcome associations. Journal of Cognitive Neuroscience, 19(12), 1994-2004.
doi: 10.1162/jocn.2007.19.12.1994URL
[78] Ossewaarde, L., van Wingen, G. A., Kooijman, S. C., B?ckstr?m, T., Fernández, G., & Hermans, E. J . (2010). Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Social Cognitive and Affective Neuroscience, 6(5), 612-620.
doi: 10.1093/scan/nsq071URL
[79] Padr?o, G., Mallorquí, A., Cucurell, D., Marco-Pallares, J., & Rodriguez-Fornells, A . (2013). Neurophysiological differences in reward processing in anhedonics. Cognitive, Affective, and Behavioral Neuroscience, 13(1), 102-115.
doi: 10.3758/s13415-012-0119-5URL
[80] Petersen, N., London, E. D., Liang, L., Ghahremani, D. G., Gerards, R., Goldman, L., & Rapkin, A. J . (2016). Emotion regulation in women with premenstrual dysphoric disorder. Archives of Women's Mental Health, 19(5), 891-898.
doi: 10.1007/s00737-016-0634-4URL
[81] Protopopescu, X., Tuescher, O., Pan, H., Epstein, J., Root, J., Chang, L., ... Sibersweig, D . (2008). Toward a functional neuroanatomy of premenstrual dysphoric disorder. Journal of Affective Disorders, 108(1-2), 87-94.
doi: 10.1016/j.jad.2007.09.015URL
[82] Proudfit, G. H . (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449-459.
doi: 10.1111/psyp.12370URL
[83] Rapkin, A. J., Berman, S. M., Mandelkern, M. A., Silverman, D. H. S., Morgan, M., & London, E. D . (2011). Neuroimaging evidence of cerebellar involvement in premenstrual dysphoric disorder. Biological Psychiatry, 69(4), 374-380.
doi: 10.1016/j.biopsych.2010.09.029URL
[84] Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S . (2004). The role of the medial frontal cortex in cognitive control. Science, 306(5695), 443-447.
doi: 10.1126/science.1100301URL
[85] Rougépont, F., Piazza, P. V., Kharouby, M., Moal, M. L., & Simon, H . (1993). Higher and longer stress-induced increase in dopamine concentrations in the nucleus accumbens of animals predisposed to amphetamine self-administration: A microdialysis study. Brain Research, 602(1), 169-174.
doi: 10.1016/0006-8993(93)90260-TURL
[86] Rubinow, D. R., Roybyrne, P., Hoban, M. C., Grover, G. N., Stambler, N., & Post, R. M . (1986). Premenstrual mood changes: Characteristic patterns in women with and without premenstrual syndrome. Journal of Affective Disorders, 10(2), 85-90.
doi: 10.1016/0165-0327(86)90030-3URL
[87] Sakaki, M., & Mather, M . (2012). How reward and emotional stimuli induce different reactions across the menstrual cycle. Social and Personality Psychology Compass, 6(1), 1-17.
doi: 10.1111/spco.2011.6.issue-1URL
[88] Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J . (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257-262.
doi: 10.1038/nn.2726URL
[89] Schimmack, U . (2008). The structure of subjective well-being. In M. Eid & R. J. Larsen (Eds.), The science of subjective well-being (pp. 97-123). Guilford Press.
[90] Schmidt, P. J., & Grover, G. N . (1990). State-dependent alterations in the perception of life events in menstrual- related mood disorders. American Journal of Psychiatry, 147(2), 230-234.
doi: 10.1176/ajp.147.2.230URL
[91] Schmedt, P . (1993). Differential behavioral effects of gonadal steroids in women with and in those without premenstraul syndrome. Obstetrical and Gynecological Survey, 338(4), 209-216.
[92] Schwartz, R. M., Reynolds III, C. F., Thase, M. E., Frank, E., Fasiczka, A. L., & Haaga, D. A . (2002). Optimal and normal affect balance in psychotherapy of major depression: Evaluation of the balanced states of mind model. Behavioural and Cognitive Psychotherapy, 30(4), 439-450.
doi: 10.1017/S1352465802004058URL
[93] Segebladh, B., Borgstr?m, A., Nyberg, S., Bixo, M., & Sundstr?mporomaa, I . (2009). Evaluation of different add- back estradiol and progesterone treatments to gonadotropin- releasing hormone agonist treatment in patients with premenstrual dysphoric disorder. American Journal of Obstetrics and Gynecology, 201(issue), 139.e1- 139.e8.
doi: 10.1016/j.ajog.2009.03.016URL
[94] Snaith, R. P., Hamilton, M., Morley, S., Humayan, A., Hargreaves, D., & Trigwell, P . (1995). A scale for the assessment of hedonic tone the Snaith-Hamilton pleasure scale. The British Journal of Psychiatry, 167(1), 99-103.
doi: 10.1192/bjp.167.1.99URL
[95] Swerdlow, N. R., Hartman, P. L., & Auerbach, P. P . (1997). Changes in sensorimotor inhibition across the menstrual cycle: Implications for neuropsychiatric disorders. Biological Psychiatry, 41(4), 452-460.
doi: 10.1016/S0006-3223(96)00065-0URL
[96] Tzur, G., & Berger, A . (2009). Fast and slow brain rhythms in rule/expectation violation tasks: Focusing on evaluation processes by excluding motor action. Behavioural Brain Research, 198(2), 420-428.
doi: 10.1016/j.bbr.2008.11.041URL
[97] Valenti, O., Lodge, D. J., & Grace, A. A . (2011). Aversive stimuli alter ventral tegmental area dopamine neuron activity via a common action in the ventral hippocampus. Journal of Neuroscience, 31(11), 4280-4289.
doi: 10.1523/JNEUROSCI.5310-10.2011URL
[98] Viau, V . (2002). Functional cross-talk between the hypothalamic-pituitary-gonadal and -adrenal axes. Journal of Neuroendocrinology, 14(6), 506-513.
doi: 10.1046/j.1365-2826.2002.00798.xURL
[99] Watson, D., Clark, L. A., & Tellegen, A . (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063-1070.
doi: 10.1037/0022-3514.54.6.1063URL
[100] Wu, C., Ding, Y., Chen, B., Gao, Y., Wang, Q., Wu, Z., ... Li, L . (2019). Both Val158Met polymorphism of catechol-o- methyltransferase gene and menstrual cycle affect prepulse inhibition but not attentional modulation of prepulse inhibition in younger-adult females. Neuroscience, 404, 396-406.
doi: 10.1016/j.neuroscience.2019.02.001URL
[101] Wu, M., Liang, Y., Wang, Q., Zhao, Y., & Zhou, R . (2016). Emotion dysregulation of women with premenstrual syndrome. Scientific Reports, 6, 38501.
doi: 10.1038/srep38501URL
[102] Wu, M. Y., Zhou, R. L., Huang, Y. M., Wang, Q. G., Zhao, Y., & Liu, Y. F . (2014). Effects of menstrual cycle and neuroticism on emotional responses of healthy women. Acta Psychologica Sinica, 46(1), 58-68.
doi: 10.3724/SP.J.1041.2014.00058URL
[ 吴梦莹, 周仁来, 黄雅梅, 王庆国, 赵燕, 刘雁峰 . (2014). 神经质程度和月经周期对女性主观情绪和生理反应的影响. 心理学报, 46(1), 58-68.]
[103] Yamada, K., & Kamagata, E . (2017). Reduction of quality- adjusted life years (QALYs) in patients with premenstrual dysphoric disorder (PMDD). Quality of Life Research, 2 6(11), 3069-3073.
[104] Zhang, Y. X., Wang, Y., & Qian, M. Y . (1990). Reliability and validity of Beck depression inventory (BDI) examined in Chinese samples. Chinese Mental Health Journal, 4(4), 164-168.
[ 张雨新, 王燕, 钱铭怡 . (1990). Beck抑郁量表的信度和效度. 中国心理卫生杂志, 4(4), 164-168.]
[105] Zhao, G. L., Wang, L. H., & Qu, C. Y . (1998). Prevalence of premenstrual syndrome in reproductive women and its influential factors. Chinese Journal of Obstetrics and Gynecology, 32(4), 222-224.
[ 赵更力, 王临虹, 渠川琰 . (1998). 育龄妇女经前期综合征的发生情况及影响因素. 中华妇产科杂志, 32(4), 222-224.]
[106] Zheng, J. R., Huang, Z. R., Huang, J. J., Zhuang, X. Q., Wang, D. B., Zheng, S. Y., ... Wu, J. A . (2002). A study of psychometric properties, normative scores and factor structure of Beck anxiety inventory Chinese version. Chinese Journal of Clinical Psychology, 10(1), 4-6.
[ 郑健荣, 黄炽荣, 黄洁晶, 庄香泉, 王得宝, 郑淑仪, ... 吴基安 . (2002). 贝克焦虑量表的心理测量学特性、常模分数及因子结构的研究. 中国临床心理学杂志, 10(1), 4-6.]
[107] Zhou, W., He, G., Gao, J., Yuan, Q., Feng, H., & Zhang, C. K . (2012). The effects of group reminiscence therapy on depression, self-esteem, and affect balance of Chinese community-dwelling elderly. Archives of Gerontology and Geriatrics, 54(3), e440-e447.
doi: 10.1016/j.archger.2011.12.003URL




[1]刘洁, 李瑾琪, 申超然, 胡小惠, 赵庭浩, 关青, 罗跃嘉. 数学焦虑个体近似数量加工的神经机制:一项EEG研究[J]. 心理学报, 2020, 52(8): 958-970.
[2]蒋宇宸, 蔡笑, 张清芳. θ频段(4~8 Hz)的活动反映了汉语口语产生中音节信息的加工[J]. 心理学报, 2020, 52(10): 1199-1211.
[3]付超, 张振, 何金洲, 黄四林, 仇剑崟, 王益文. 普遍信任博弈决策的动态过程 ——来自脑电时频分析的证据[J]. 心理学报, 2018, 50(3): 317-326.
[4]吴梦莹;周仁来;黄雅梅;王庆国;赵燕;刘雁峰. 神经质程度和月经周期对女性主观情绪和生理反应的影响[J]. 心理学报, 2014, 46(1): 58-68.
[5]王晓田,Victor S.Johnston,Juan C.Oliver. 认知与情绪过程的脑诱发电位研究——情绪的适应性假说[J]. 心理学报, 1992, 24(4): 72-80.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4719
相关话题/健康 心理 数据 南京大学 实验