删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

振动触觉频率信息的工作记忆容量及存储机制

本站小编 Free考研考试/2022-01-01

王春地1(), 王大辉2()
1 北京航空航天大学人文社会科学学院心理系, 北京 100191
2 北京师范大学系统科学学院, 北京 100875
收稿日期:2020-10-20出版日期:2021-07-15发布日期:2021-05-24
通讯作者:王春地,王大辉E-mail:wangchundi@buaa.edu.cn;wangdh@bnu.edu.cn

基金资助:国家自然科学基金青年项目(31900751)

Capacity and maintenance mechanism of vibrotactile working memory

WANG Chundi1(), WANG Da-hui2()
1 Department of Psychology and Research Centre of Aeronautic Psychology and Behavior, Beihang University, Beijing 100191, China
2 School of Systems Science and State Key Laboratory of Cognitive Science and Learning of China, Beijing Normal University, Beijing 100875, China
Received:2020-10-20Online:2021-07-15Published:2021-05-24
Contact:WANG Chundi,WANG Da-hui E-mail:wangchundi@buaa.edu.cn;wangdh@bnu.edu.cn






摘要/Abstract


摘要: 工作记忆可以同时保存多个信息并且容量有限, 这一内在机制是工作记忆研究的重点问题。视觉和言语等研究领域都发现工作记忆能够存储多个信息单元, 但对振动触觉工作记忆是否能存储多个频率信息目前尚无相关研究。由于振动触觉频率刺激和视觉刺激具有不同的神经编码机制, 以及振动频率信息是通过躯体感觉产生的模拟的、单维的、参数化信息, 振动触觉工作记忆容量及其加工存储机制的研究也必不可少。首先, 本项目将采用新的实验范式, 探究不同的刺激呈现方式以及不同反应报告方式下, 振动触觉工作记忆的容量及其认知机制。其次, 本项目也将同时运用功能磁共振成像(fMRI)技术, 来阐述振动触觉工作记忆加工存储的神经机制。探究基于触觉频率信息的参数工作记忆容量及其神经机制是完善工作记忆模型的重要补充, 将有助于提高我们对工作记忆系统的理解, 并为视觉、听觉、触觉多模态感知觉信息的跨通道研究奠定基础。


[1] Auvray, M., Gallace, A., & Spence, C. (2011). Tactile short- term memory for stimuli presented on the fingertips and across the rest of the body surface. Attention Perception & Psychophysics, 73(4), 1227-1241.
doi: 10.3758/s13414-011-0098-6URL
[2] Bancroft, T. D., Hockley, W. E., & Servos, P. (2012). Can vibrotactile working memory store multiple items? Neuroscience Letters, 514(1), 31-34.
doi: 10.1016/j.neulet.2012.02.044URL
[3] Barak, O., Tsodyks, M., & Romo, R. (2010). Neuronal population coding of parametric working memory. Journal of Neuroscience, 30(28), 9424-9430.
doi: 10.1523/JNEUROSCI.1875-10.2010URL
[4] Bliss, J. C., Crane, H. D., Mansfield, P. K., & Townsend, J. T. (1966). Information available in brief tactile presentations. Perception & Psychophysics, 1, 273-283.
doi: 10.3758/BF03207391URL
[5] Carmichael, S. T., & Price, J. L. (1995). Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. Journal of Comparative Neurology, 363(4), 642-664.
pmid: 8847422
[6] Cavada, C., Compañy, T., Tejedor, J., Cruzrizzolo, R. J., & Reinososuárez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex, 10(3), 220-242.
pmid: 10731218
[7] Cohen, L. G., Bandinelli, S., Sato, S., Kufta, C., & Hallett, M. (1991). Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation. Electroencephalography & Clinical Neurophysiology, 81(5), 366-376.
[8] Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.
pmid: 11515286
[9] Gallace, A., & Spence, C. (2009). The cognitive and neural correlates of tactile memory. Psychological Bulletin, 135(3), 380-406.
doi: 10.1037/a0015325URL
[10] Haegens, S., Osipova, D., Oostenveld, R., & Jensen, O. (2010). Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Human Brain Mapping, 31(1), 26-35.
doi: 10.1002/hbm.20842pmid: 19569072
[11] Harris, J. A., Harris, I. M., & Diamond, M. E. (2001a). The topography of tactile learning in humans. Journal of Neuroscience, 21(3), 1056-1061.
doi: 10.1523/JNEUROSCI.21-03-01056.2001URL
[12] Harris, J. A., Harris, I. M., & Diamond, M. E. (2001b). The topography of tactile working memory. Journal of Neuroscience, 21(20), 8262-8269.
doi: 10.1523/JNEUROSCI.21-20-08262.2001URL
[13] Harris, J. A., Miniussi, C., Harris, I. M., & Diamond, M. E. (2002). Transient storage of a tactile memory trace in primary somatosensory cortex. Journal of Neuroscience, 22(19), 8720-8725.
doi: 10.1523/JNEUROSCI.22-19-08720.2002URL
[14] Iwamura, Y., Tanaka, M., Sakamoto, M., & Hikosaka, O. (1993). Rostrocaudal gradients in the neuronal receptive field complexity in the finger region of the alert monkey's postcentral gyrus. Experimental Brain Research, 92(3), 360-368.
[15] Katus, T., Grubert, A., & Eimer, M. (2015). Electrophysiological evidence for a sensory recruitment model of somatosensory working memory. Cerebral Cortex, 25(12), 4697-4703. http://doi.org/10.1093/cercor/bhu153.
doi: 10.1093/cercor/bhu153URL
[16] Killackey, H. P., Gould, H. J., Cusick, C. G., Pons, T. P., & Kaas, J. H. (1983). The relation of corpus callosum connections to architectonic fields and body surface maps in sensorimotor cortex of new and old world monkeys. Journal of Comparative Neurology, 219(4), 384-419.
pmid: 6643713
[17] Ku, Y., Zhao, D., Bodner, M., & Zhou, Y. D. (2015). Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory. The European Journal of Neuroscience, 42(3), 1905-1911. http://doi.org/10.1111/ejn.12950.
doi: 10.1111/ejn.2015.42.issue-3URL
[18] Merzenich, M. M., Kaas, J. H., Sur, M., & Lin, C. (1978). Double representation of the body surface within cytoarchitectonic area 3b and 1 in “si” in the owl monkey (aotus trivirgatus). Journal of Comparative Neurology, 181(1), 41-73.
pmid: 98537
[19] Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81-97.
doi: 10.1037/h0043158URL
[20] Morecraft, R. J., Geula, C., & Mesulam, M. M. (1992). Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. Journal of Comparative Neurology, 323(3), 341-358.
pmid: 1460107
[21] Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97-107.
pmid: 15654324
[22] Riley, M. R., & Constantinidis, C. (2016). Role of prefrontal persistent activity in working memory. Front Syst Neurosci, 9(2), 181.
[23] Romo, R., Brody, C. D., Hernández, A., & Lemus, L. (1999). Neuronal correlates of parametric working memory in the prefrontal cortex. Nature, 399(6735), 470-473.
pmid: 10365959
[24] Romo, R., & Salinas, E. (2003). Flutter discrimination: Neural codes, perception, memory and decision making. Nature Reviews Neuroscience, 4(3), 203-218.
doi: 10.1038/nrn1058URL
[25] Schmidt, T. T., Wu, Y. H., & Blankenburg, F. (2017). Content- specific codes of parametric vibrotactile working memory in humans. Journal of Neuroscience, 37(40), 9771-9777.
doi: 10.1523/JNEUROSCI.1167-17.2017URL
[26] Schmidt, T. T., Schröder, P., Reinhardt, P., & Blankenburg, F. (2020). Rehearsal of tactile working memory: Premotor cortex recruits two dissociable neuronal content representations. Human Brain Mapping, 42(1), 245-258. http://doi.org/10.1002/hbm.25220.
doi: 10.1002/hbm.v42.1URL
[27] Sörös, P., Marmurek, J., Tam, F., Baker, N., Staines, W. R., & Graham, S. J. (2007). Functional MRI of working memory and selective attention in vibrotactile frequency discrimination. Bmc Neuroscience, 8(1), 48.
doi: 10.1186/1471-2202-8-48URL
[28] Spitzer, B., & Blankenburg, F. (2011). Stimulus-dependent EEG activity reflects internal updating of tactile working memory in humans. Proceedings of the National Academy of Sciences of the United States of America, 108(20), 8444-8449.
[29] Spitzer, B., & Blankenburg, F. (2012). Supramodal parametric working memory processing in humans. Journal of Neuroscience, 32(10), 3287-3295.
doi: 10.1523/JNEUROSCI.5280-11.2012URL
[30] Spitzer, B., Gloel, M., Schmidt, T. T., & Blankenburg, F. (2014). Working memory coding of analog stimulus properties in the human prefrontal cortex. Cerebral Cortex, 24(8), 2229-2236.
doi: 10.1093/cercor/bht084URL
[31] Spitzer, B., Wacker, E., & Blankenburg, F. (2010). Oscillatory correlates of vibrotactile frequency processing in human working memory. Journal of Neuroscience, 30(12), 4496-4502.
doi: 10.1523/JNEUROSCI.6041-09.2010URL
[32] Sreenivasan, K. K., Curtis, C. E., & D'Esposito, M. (2014). Revisiting the role of persistent neural activity during working memory. Trends in Cognitive Sciences, 18(2), 82-89.
doi: 10.1016/j.tics.2013.12.001URL
[33] Wu, Y. H., Uluç, I., Schmidt, T. T., Tertel, K., Kirilina, E., & Blankenburg, F. (2018). Overlapping frontoparietal networks for tactile and visual parametric working memory representations. Neuroimage, 166, 325-334.
doi: 10.1016/j.neuroimage.2017.10.059URL
[34] Zhao, D., Zhou, Y. D., Bodner, M., & Ku, Y. (2018). The causal role of the prefrontal cortex and somatosensory cortex in tactile working memory. Cerebral Cortex, 28(10), 3468-3477.
doi: 10.1093/cercor/bhx213URL
[35] Zhou, Y. D., & Fuster, J. M. (1996). Mnemonic neuronal activity in somatosensory cortex. Proceedings of the National Academy of Sciences of the United States of America, 93(19), 10533-10537.
[36] Zhou, Y. D., & Fuster, J. M. (2000). Visuo-tactile cross-modal associations in cortical somatosensory cells. Proceedings of the National Academy of Sciences of the United States of America, 97(17), 9777-9782.




[1]戴梦诺, 李艳菊, 杜峰. 多重注意定势的证据:来自空间瞬脱的结果[J]. 心理科学进展, 2017, 25(suppl.): 9-9.
[2]王思思; 库逸轩. 右后顶叶经颅直流电刺激提升高负荷下视觉空间工作记忆容量[J]. 心理科学进展, 2016, 24(Suppl.): 43-.
[3]何旭;郭春彦. 视觉工作记忆的容量与资源分配[J]. 心理科学进展, 2013, 21(10): 1741-1748.
[4]单西娇;李寿欣. 由两个模型看视觉工作记忆容量机制的研究[J]. 心理科学进展, 2010, 18(11): 1684-1691.
[5]曲琛,莫雷,谭绍珍,王瑞明. 说明文阅读中的视角效应[J]. 心理科学进展, 2005, 13(1): 33-38.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5499
相关话题/工作 信息 视觉 科学 心理