删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

解读不显著结果:基于500个实证研究的量化分析

本站小编 Free考研考试/2022-01-01

王珺1, 宋琼雅1, 许岳培2,3, 贾彬彬4, 陆春雷5, 陈曦6, 戴紫旭7, 黄之玥8, 李振江9, 林景希10, 罗婉莹11, 施赛男12, 张莹莹13, 臧玉峰14, 左西年15, 胡传鹏16()
1中山大学心理学系, 广州 510006
2中国科学院行为科学重点实验室 (中国科学院心理研究所), 北京 100101
3中国科学院大学心理学系, 北京 100049
4上海体育学院心理学院, 上海 200438
5浙江师范大学教师教育学院, 金华 321000
6个人, 上海 200122
7华南师范大学心理学院, 广州 510631
8Tisch School of the Arts, New York University, New York 11201, the United States
9苏州大学教育学院, 苏州 215123
10黑龙江大学教育科学研究院, 哈尔滨 150080
11北京大学心理与认知科学学院, 北京 100871
12华东师范大学心理与认知科学学院, 上海 200063
13西南大学心理学部, 重庆 400715
14杭州师范大学认知与脑疾病研究中心, 杭州 311121
15北京师范大学认知神经科学与学习国家重点实验室, 北京 100875
16Leibniz Institute for Resilience Research, 55131 Mainz, Germany
收稿日期:2020-07-14出版日期:2021-03-15发布日期:2021-01-26
通讯作者:胡传鹏E-mail:hcp4715@hotmail.com



Interpreting nonsignificant results: A quantitative investigation based on 500 Chinese psychological research

WANG Jun1, SONG Qiongya1, XU Yuepei2,3, JIA Binbin4, LU Chunlei5, CHEN Xi6, DAI Zixu7, HUANG Zhiyue8, LI Zhenjiang9, LIN Jingxi10, LUO Wanying11, SHI Sainan12, ZHANG Yingying13, ZANG Yufeng14, ZUO Xi-Nian15, HU Chuanpeng16()
1Department of Psychology, Sun Yat-Sen University, Guangzhou 510006, China
2Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
3Department of Psychology, Chinese Academy of Sciences, Beijing 100049, China
4School of Psychology, Shanghai University of Sport, Shanghai 200438, China
5College of Teacher Education, Zhejiang Normal University, Jinhua 321000, China
6Person, Shanghai 200122, China
7School of Psychology, South China Normal University, Guangzhou 510631, China
8Tisch School of the Arts, New York University, New York 11201, the United States
9School of Education, Soochow University, Suzhou 215123, China
10Institute of Education Science, Heilongjiang University, Harbin 150080, China
11School of Psychology and Cognitive Sciences, Peking University, Beijing 100871, China
12School of Psychology and Cognitive Sciences, East China Normal University, Shanghai 200063, China
13Faculty of Psychology, Southwest University, Chongqing 400715, China
14Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 311121, China
15National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
16Leibniz Institute for Resilience Research, 55131 Mainz, Germany
Received:2020-07-14Online:2021-03-15Published:2021-01-26
Contact:HU Chuanpeng E-mail:hcp4715@hotmail.com






摘要/Abstract


摘要: 不显著结果(如, p > 0.05)在心理学研究中十分常见, 且容易被误解为接受零假设的证据, 并可能导致分组匹配研究的错误推断或者忽视被小样本的不显著结果掩盖的真实效应。但国内目前尚无实证研究对不显著结果的普遍性及其解读进行调查。本研究调查500篇中文心理学实证研究, 统计其摘要中出现与不显著结果相关的阴性陈述的频率, 判断并统计基于阴性陈述的推断准确性, 并使用贝叶斯因子对不显著结果中包含t值的研究进行重新评估。结果表明, 36%的摘要提及不显著结果, 共包含236个阴性陈述。其中, 41%的阴性陈述对不显著结果的解读出现偏差(如, 解读为支持了零假设)。对包含t值的研究进行贝叶斯因子分析, 结果显示仅有5.1%的不显著结果可以提供强证据支持零假设(BF01 > 10)。与先前对国际心理学期刊的调查结果相比(32%的摘要包含阴性陈述; 72%的阴性陈述对不显著结果的解读错误), 中文心理学期刊中报告不显著结果的比例更高, 且对不显著结果解读错误的比例更低。但国内研究者仍需进一步加强对不显著结果的认识, 推广适于评估不显著结果的统计方法。



图1文献编码和数据提取流程
图1文献编码和数据提取流程


表1阴性陈述的具体类别以及分类标准
类别 分类标准 示例
基于频率主义的正确解读 根据NHST的逻辑对不显著结果进行解读, 即仅说明其结果无法拒绝零假设, 或无法支持备择假设。 结果表明没有证据支持干预组和控制组有(显著)差异。
基于频率主义的错误解读
——推广至总体
将不显著结果解读为支持了研究中样本所在总体水平上的零假设。 结果表明干预没有效果。
基于频率主义的错误解读
——基于当前样本
将不显著结果解读为支持了研究中样本中的零假设。 结果表明干预组和控制组之间没有
差异。
基于贝叶斯因子的解读 利用贝叶斯因子支持零假设而非备择假设。 BF01 > 10, 表明有强的证据支持零假设。
难以判断 由于阴性陈述的语言措辞, 对其类别难以做出明确判断。 除恐惧情绪外, 基本表情的强度越大,
被试对表情的识别越好。

表1阴性陈述的具体类别以及分类标准
类别 分类标准 示例
基于频率主义的正确解读 根据NHST的逻辑对不显著结果进行解读, 即仅说明其结果无法拒绝零假设, 或无法支持备择假设。 结果表明没有证据支持干预组和控制组有(显著)差异。
基于频率主义的错误解读
——推广至总体
将不显著结果解读为支持了研究中样本所在总体水平上的零假设。 结果表明干预没有效果。
基于频率主义的错误解读
——基于当前样本
将不显著结果解读为支持了研究中样本中的零假设。 结果表明干预组和控制组之间没有
差异。
基于贝叶斯因子的解读 利用贝叶斯因子支持零假设而非备择假设。 BF01 > 10, 表明有强的证据支持零假设。
难以判断 由于阴性陈述的语言措辞, 对其类别难以做出明确判断。 除恐惧情绪外, 基本表情的强度越大,
被试对表情的识别越好。



图2(a)阴性陈述在不同杂志中的占比; (b)阴性陈述的解读分类在不同杂志中的占比 注:此分类是基于解读①, 见正文关于两种解读的说明。
图2(a)阴性陈述在不同杂志中的占比; (b)阴性陈述的解读分类在不同杂志中的占比 注:此分类是基于解读①, 见正文关于两种解读的说明。



图3(a)不同先验设置下BF01的分布及含义; (b)默认先验下的BF01与p值的关系; (c)默认先验下的BF01与样本量的关系 注:针对同一个样本可能存在多个BF01值, 例如样本量为138的样本对应多个BF01。
图3(a)不同先验设置下BF01的分布及含义; (b)默认先验下的BF01与p值的关系; (c)默认先验下的BF01与样本量的关系 注:针对同一个样本可能存在多个BF01值, 例如样本量为138的样本对应多个BF01。







[1] 程开明, 李泗娥. (2019). 科学研究中的P值: 误解、操纵及改进. 数量经济技术经济研究, (7), 117-136. doi: 10.13653/j.cnki.jqte.2019.07.007
[2] 崔诣晨, 王沛, 崔亚娟. (2019). 知觉冲突印象形成的认知控制策略: 以刻板化信息与反刻板化信息为例. 心理学报, 51(10), 1157-1170. doi: 10.3724/SP.J.1041.2019.01157
[3] 郝丽, 刘乐平, 申亚飞. (2016). 统计显著性: 一个被误读的P值. 统计与信息论坛, 31(12), 3-10.
[4] 胡传鹏, 孔祥祯, Eric-Jan, Wagenmakers, Alexander, Ly, 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965. doi: 10.3724/SP.J.1042.2018. 00951
[5] 胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题: 从危机到契机. 心理科学进展, 24(9), 1504-1518. doi: 10.3724/SP.J.1042.2016. 01504
doi: 10.3724/SP.J.1042.2016.01504URL
[6] 陆春雷, 王珺, 宋琼雅, 贾彬彬, 许岳培, 胡传鹏. (2020). 从不显著结果中提取信息的方法: 原理及其实现. 2020-10-21取自 www.chinaxiv.org/abs/202001.00113
[7] 骆大森. (2017). 心理学可重复性危机两种根源的评估. 心理与行为研究, 15(5), 577-586.
[8] 吕小康. (2012). Fisher与Neyman-Pearson的分歧与心理统计中的假设检验争议. 心理科学, 35(6), 1502-1506. doi: 10.16719/j.cnki.1671-6981.2012.06.042
[9] 吕小康. (2014). 从工具到范式: 假设检验争议的知识社会学反思. 社会, 34(6), 216-236. doi: 10.15992/j.cnki.31- 1123/c.2014.06.011
[10] 卢淑华. (2009). 社会统计学(第四版). 北京: 北京大学出版社.
[11] 谢书书, 张积家, 朱君. (2019). 颜色范畴知觉效应发生在大脑两半球: 来自纳西族和汉族的证据. 心理学报, 51(11), 1229-1243. doi: 10.3724/SP.J.1041.2019.01229
[12] 张厚粲, 徐建平. (2015). 现代心理与教育统计学(第四版). 北京: 北京师范大学出版社.
[13] 仲晓波. (2016). 关于假设检验的争议: 问题的澄清与解决. 心理科学进展, 24(10), 1670-1676. doi: 10.3724/SP.J. 1042.2016.01670
doi: 10.3724/SP.J.1042.2016.01670URL
[14] Aczel, B., Palfi, B., & Szaszi, B. (2017). Estimating the evidential value of significant results in psychological science. PloS One, 12(8), e0182651. doi: 10.1371/journal. pone.0182651
URLpmid: 28859154
[15] Aczel, B., Palfi, B., Szollosi, A., Kovacs, M., Szaszi, B., Szecsi, P., … Wagenmakers, E. -J. (2018). Quantifying support for the null hypothesis in psychology: An empirical investigation. Advances in Methods and Practices in Psychological Science, 1(3), 357-366. doi: 10.1177/ 251524591877374
doi: 10.1177/2515245918773742URL
[16] Algermissen, J., & Mehler, D. M. (2018). May the power be with you: Are there highly powered studies in neuroscience, and how can we get more of them? Journal of Neurophysiology, 119(6), 2114-2117. doi: 10.1152/jn.00765. 2017
doi: 10.1152/jn.00765.2017URLpmid: 29465324
[17] American Psychological Association. (2010). Publication Manual of the American Psychological Association. Washington DC: American Psychological Association.
[18] Amrhein, V., Greenland, S., & McShane, B. (2019). Scientists rise up against statistical significance. Nature, 567, 305-307. doi: 10.1038/d41586-019-00857-9
doi: 10.1038/d41586-019-00857-9URLpmid: 30894741
[19] Baker, M. (2016). 1, 500 scientists lift the lid on reproducibility. Nature, 553, 452-454. doi: 10.1038/533452a
[20] Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafo, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365-376. doi: 10.1038/nrn3475
URLpmid: 23571845
[21] Cassidy, S. A., Dimova, R., Giguère, B., Spence, J. R., & Stanley, D. J. (2019). Failing grade: 89% of introduction- to-psychology textbooks that define or explain statistical significance do so incorrectly. Advances in Methods and Practices in Psychological Science, 2(3), 233-239. doi: 10. 1177/2515245919858072
doi: 10.1177/2515245919858072URL
[22] Chen, X., Lu, B., & Yan, C. -G. (2018). Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes. Human Brain Mapping, 39(1), 300-318. doi: 10.1101/128645
doi: 10.1002/hbm.23843URLpmid: 29024299
[23] Chuard, P. J., Vrtílek, M., Head, M. L., & Jennions, M. D. (2019). Evidence that nonsignificant results are sometimes preferred: Reverse P-hacking or selective reporting? PLoS Biology, 17(1), e3000127. doi: 10.1371/journal.pbio.3000127
doi: 10.1371/journal.pbio.3000127URLpmid: 30682013
[24] Dienes, Z. (2014). Using Bayes to get the most out of non- significant results. Frontiers in Psychology, 5, 781. doi: 10.3389/fpsyg.2014.00781
doi: 10.3389/fpsyg.2014.00781URLpmid: 25120503
[25] Dienes, Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical Psychology, 72, 78-89. doi: 10.1016/j.jmp.2015.10.003
doi: 10.1016/j.jmp.2015.10.003URL
[26] Edwards, W., Lindman, H., & Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review, 70(3), 193-242. doi: 10.1037/h0044139
doi: 10.1037/h0044139URL
[27] Fanelli, D. (2012). Negative results are disappearing from most disciplines and countries. Scientometrics, 90(3), 891-904. doi: 10.1007/s11192-011-0494-7
doi: 10.1007/s11192-011-0494-7URL
[28] Fiedler, K., Kutzner, F., & Krueger, J. I. (2012). The long way from α-error control to validity proper. Perspectives on Psychological Science, 7(6), 661-669. doi: 10.1177/ 1745691612462587
URLpmid: 26168128
[29] Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378-382. doi: 10.1037/h0031619
doi: 10.1037/h0031619URL
[30] Franco, A., Malhotra, N., & Simonovits, G. (2014). Publication bias in the social sciences: Unlocking the file drawer. Science, 345(6203), 1502-1505. doi: 10.1126/science. 1255484
doi: 10.1126/science.1255484URLpmid: 25170047
[31] Gamer, M., Lemon, J., & Singh, I. F. P.(2019). irr: Various coefficients of interrater reliability and agreement (R package version 0.84.1) [Computer software]. Retrieved from https://CRAN.R-project.org/package=irr.
[32] Gigerenzer, G., Krauss, S., & Vitouch, O. (2004). The null ritual: What you always wanted to know about significance testing but were afraid to ask. SAGE Publications, Inc. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences(pp. 392-410). Thousand Oaks, CA: SAGE Publications, Inc.
[33] Greenland, S., Senn, S. J., Rothman, K. J., Carlin, J. B., Poole, C., Goodman, S. N., & Altman, D. G. (2016). Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. European Journal of Epidemiology, 31(4), 337-350. doi: 10.1007/s10654-016-0149-3
URLpmid: 27209009
[34] Gronau, Q. F., Ly, A., & Wagenmakers, E. -J. (2019). Informed bayesian t-tests. The American Statistician, 1-14. doi: 10. 1080/00031305.2018.1562983
[35] Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of p-hacking in science. PLoS Biology, 13(3). doi: 10.1371/journal.pbio. 1002106
URLpmid: 25761097
[36] Hoekstra, R., Monden, R., van Ravenzwaaij, D., & Wagenmakers, E. -J. (2018). Bayesian reanalysis of null results reported in medicine: Strong yet variable evidence for the absence of treatment effects. PloS One, 13(4), e0195474. doi: 10.1371/journal.pone.0195474
doi: 10.1371/journal.pone.0196682URLpmid: 29709011
[37] Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124. doi: 10. 1371/journal.pmed.0020124
URLpmid: 16060722
[38] Jeffreys, H. (1961). Theory of probability. Oxford, UK: Oxford University Press.
[39] Jia, X. -Z., Zhao, N., Barton, B., Burciu, R., Carriere, N., Cerasa, A., … Zang, Y. -F. (2018). Small effect size leads to reproducibility failure in resting-state fMRI studies. Retrieved October 21, 2020, from https://www.biorxiv. org/content/10.1101/285171v1
[40] Kendall, M. G., & Gibbons, J. D. (1990). Rank correlation methods (5th ed.). London, England: Edward Arnold.
[41] Klein, R. A., Ratliff, K. A., Vianello, M., Adams Jr, R. B., Bahník, ?., Bernstein, M. J., … Nosek, B. A. (2014). Investigating variation in replicability: A “many labs” replication project. Social Psychology, 45(3), 142-152. doi: 10.1027/1864-9335/a000178
doi: 10.1027/1864-9335/a000178URL
[42] Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6(3), 299-312. doi: 10.1177/ 1745691611406925
doi: 10.1177/1745691611406925URL
[43] Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin and Review, 25(1), 178-206. doi: 10.3758/ s13423-016-1221-4
URLpmid: 28176294
[44] Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in psychology: A diagnosis based on the correlation between effect size and sample size. PloS One, 9(9), e105825. doi: 10.1371/journal.pone.0105825
doi: 10.1371/journal.pone.0105825URLpmid: 25192357
[45] Lakens, D., McLatchie, N., Isager, P. M., Scheel, A. M., & Dienes, Z. (2018). Improving inferences about null effects with Bayes factors and equivalence tests. The Journals of Gerontology: Series B. Advance online publication. http:// doi/10.1093/geronb/gby065
[46] Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing for psychological research: A tutorial. Advances in Methods and Practices in Psychological Science, 1(2), 259-269. doi: 10.1177/2515245918770963
doi: 10.1177/2515245918770963URL
[47] Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. doi: 10.2307/2529310
URLpmid: 843571
[48] Lee, M. D., & Wagenmakers, E. -J.(2014) Bayesian cognitive modeling: A practical course Cambridge, England: Cambridge University Press A practical course . Cambridge, England: Cambridge University Press.
[49] Ly, A., Raj, A., Etz, A., Marsman, M., Gronau, Q. F., & Wagenmakers, E. -J. (2018). Bayesian reanalyses from summary statistics: A guide for academic consumers. Advances in Methods and Practices in Psychological Science, 1(3), 367-374.doi: 10.1177/2515245918779348
[50] Ly, A., Verhagen, J., & Wagenmakers, E. -J. (2016a). An evaluation of alternative methods for testing hypotheses, from the perspective of Harold Jeffreys. Journal of Mathematical Psychology, 72, 43-55. doi: 10.1016/j.jmp. 2016.01.003
[51] Ly, A., Verhagen, J., & Wagenmakers, E. -J. (2016b). Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. Journal of Mathematical Psychology, 72, 19-32. doi: 10.1016/j.jmp. 2015.06.004
[52] Lyu, X. -K., Xu, Y. P., Zhao, X. -F., Zuo, X. -N., & Hu, C. -P. (2020). Beyond psychology: The prevalence of misinterpretation of p-value and confidence intervals across different fields. Journal of Pacific Rim Psychology, 14, e6. doi: 10.1017/prp.2019.28
[53] Lyu, Z. Y., Peng, K. P., & Hu, C. -P. (2018). P-value, confidence intervals and statistical inference: A new dataset of misinterpretation. Frontiers in Psychology, 9, 868. doi: 10.3389/fpsyg.2018.00868
URLpmid: 29937743
[54] McElreath, R. (2018). Statistical rethinking: A Bayesian course with examples in R and Stan. Virginia Beach, VA: Chapman and Hall/CRC Press.
[55] Meehl, P.E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34(2), 103-115. doi: 10.1086/288135
[56] Miller, G. (2011). ESP paper rekindles discussion about statistics. Science, 331(6015), 272-273. doi: 10.1126/ science.331.6015.272
URLpmid: 21252321
[57] Morey, R. D., Rouder, J. N., & Jamil, T. (2015). BayesFactor: Computation of Bayes factors for common designs (Version 0.9.12-2) [Computer software]. Retrieved from https://cran. r-project.org/web/packages/BayesFactor/BayesFactor. pdf.
[58] Nickerson, R. S. (2000). Null hypothesis significance testing: A review of an old and continuing controversy. Psychological Methods, 5(2), 241-301. doi: 10.1037/1082-989X.5.2.241
URLpmid: 10937333
[59] Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. Science, 349(6251), 943-950. doi: 10.1126/science.aac4716
[60] Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. Psychological Bulletin, 113(3), 553. doi: 10.1037/0033-2909.113.3.553
URLpmid: 8316613
[61] Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin and Review, 16(2), 225-237. doi: 10.3758/PBR.16.2.225
URLpmid: 19293088
[62] Sch?fer, T., & Schwarz, M. (2019). The meaningfulness of effect sizes in psychological research: Differences between sub-disciplines and the impact of potential biases. Frontiers in Psychology, 10, 813. doi: 10.3389/fpsyg.2019.00813
[63] Sch?nbrodt, F. (2015). Grades of evidence - A cheat sheet [Web log post]. Retrieved from http://www.nicebread.de/ grades-of-evidence-a-cheat-sheet/.
[64] Signorell, A. (2017). DescTools: Tools for descriptive statistics (Version 0.99.22) [Computer software]. Retrieved from . https://cran.r-project.org/web/packages/DescTools/index.html.
[65] Stussi, Y., Pourtois, G., & Sander, D. (2018). Enhanced pavlovian aversive conditioning to positive emotional stimuli. Journal of Experimental Psychology: General, 147(6), 905-923. doi: 10.1037/xge0000424
[66] van Doorn, J., Ly, A., Marsman, M., & Wagenmakers, E. -J. (2018). Bayesian inference for Kendall’s rank correlation coefficient. The American Statistician, 72(4), 303-308. doi: 10.1080/00031305.2016.1264998
[67] Wagenmakers, E. -J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example Applications with JASP. Psychonomic Bulletin and Review, 25(1), 58-76. doi: 10. 3758/s13423-017-1323-7
URLpmid: 28685272
[68] Wagenmakers, E. -J., Wetzels, R., Borsboom, D., & van der Maas, H. L. J. (2011). Why psychologists must change the way they analyze their data: the case of psi: Comment on Bem (2011). Journal of Personality and Social Psychology, 100(3), 426-432. doi: 10.1037/a0022790
URLpmid: 21280965
[69] Wasserstein, R. L., & Lazar, N. A. (2016). The ASA’s statement on p-values: Context, process, and purpose. The American Statistician, 70(2), 129-133. doi: 10.1080/ 00031305.2016.1154108
[70] Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E. -J. (2011). Statistical evidence in experimental psychology: An empirical comparison using 855 t tests. Perspectives on Psychological Science, 6(3), 291-298. doi: 10.1177/1745691611406923
URLpmid: 26168519
[71] Ziliak, S. T., & McCloskey, D. N.(2008). The cult of statistical significance. Ann Arbor: University of Michigan Press.




[1]胡传鹏, 孔祥祯, Eric-Jan Wagenmakers, Alexander Ly, 彭凯平. 贝叶斯因子及其在JASP中的实现[J]. 心理科学进展, 2018, 26(6): 951-965.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5374
相关话题/心理 科学 统计 北京 心理学