删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

特征注意的全局性调制作用——增强还是抑制?

本站小编 Free考研考试/2022-01-01

黄子立1, 丁玉珑2, 曲折1()
1 中山大学心理学系, 广州 510006
2 华南师范大学心理学院, 广州 510006
收稿日期:2019-10-10出版日期:2020-04-15发布日期:2020-02-24
通讯作者:曲折E-mail:quzhe@mail.sysu.edu.cn

基金资助:国家自然科学基金(31970985);教育部人文社会科学研究一般项目(19YJA190004);广东特支计划百千万工程领军人才项目(201626026)

The global modulation of feature-based attention: Enhancement or suppression?

HUANG Zili1, DING Yulong2, QU Zhe1()
1 Department of Psychology, Sun Yat-Sen University, Guangzhou, 510006, China
2 School of Psychology, South China Normal University, Guangzhou, 510006, China
Received:2019-10-10Online:2020-04-15Published:2020-02-24
Contact:QU Zhe E-mail:quzhe@mail.sysu.edu.cn






摘要/Abstract


摘要: 特征注意(feature-based attention)是个体根据特定的特征维度或特征值分配视觉注意资源的能力。在注意焦点内, 特征注意会增强对注意特征具有反应选择性的神经元活动, 并抑制对干扰特征具有反应选择性的神经元活动。大量研究表明, 特征注意的调制作用可以扩散到注意焦点以外, 具有全局性的特点, 但这种全局性调制作用是增强机制还是抑制机制仍然存在争议。这可能是由于两种机制在时间进程等属性上存在差异, 在视觉信息加工中可能扮演着不同角色。相对而言, 全局性抑制作用可能更易受实验设计和实验参数的影响。后续研究应该探究全局性抑制机制在什么条件下发挥作用, 以及进一步对全局性的增强机制和抑制机制进行分离。



图1特征注意的经典模型。A: 偏向竞争模型。神经元感受野(灰色虚线圆圈示)内存在相互竞争的视觉刺激, 如向上和向下运动的随机点, 选择性注意调制了对向上和向下运动具有反应偏好的神经元集群的反应。结果发现, 针对MT区神经元, 相比于注意感受野外刺激的基线条件, 当猴子选择性注意其感受野内朝偏好方向的运动点时, 神经元放电率显著增强, 而当猴子选择性注意相反方向时, 神经元放电率显著减弱。资料来源:Treue & Maunsell (1999), 有所修改。B: 特征相似性增益模型。Martinez-Trujillo和Treue (2004)在两侧视野呈现相同运动方向的随机点, 记录猴子在注意随机点运动方向和注意中央注视点两种状态下感受野(灰色虚线圆圈示)对应的MT区神经元活动。结果发现, 随机点运动方向与神经元偏好方向之间的相似性调制了神经元的响应水平:随机点运动方向与神经元偏好方向相似时, 神经元的反应被增强; 而当随机点运动方向与神经元偏好方向差异较大时, 神经元的反应受到抑制。
图1特征注意的经典模型。A: 偏向竞争模型。神经元感受野(灰色虚线圆圈示)内存在相互竞争的视觉刺激, 如向上和向下运动的随机点, 选择性注意调制了对向上和向下运动具有反应偏好的神经元集群的反应。结果发现, 针对MT区神经元, 相比于注意感受野外刺激的基线条件, 当猴子选择性注意其感受野内朝偏好方向的运动点时, 神经元放电率显著增强, 而当猴子选择性注意相反方向时, 神经元放电率显著减弱。资料来源:Treue & Maunsell (1999), 有所修改。B: 特征相似性增益模型。Martinez-Trujillo和Treue (2004)在两侧视野呈现相同运动方向的随机点, 记录猴子在注意随机点运动方向和注意中央注视点两种状态下感受野(灰色虚线圆圈示)对应的MT区神经元活动。结果发现, 随机点运动方向与神经元偏好方向之间的相似性调制了神经元的响应水平:随机点运动方向与神经元偏好方向相似时, 神经元的反应被增强; 而当随机点运动方向与神经元偏好方向差异较大时, 神经元的反应受到抑制。



图2支持特征注意全局性增强机制的实证性证据。A: Saenz等人(2003)的分散注意任务范式示意图; 受试者在每侧视野内注意其中一种运动方向的随机点, 并同时完成运动速度变化的检测任务。结果发现, 注意相同特征条件下受试者的正确率显著高于注意不同特征条件。B: White和Carrasco (2011)的分散注意任务范式示意图; 一侧视野会呈现向上和向下运动的重叠随机点作为主要刺激, 在另一侧视野会呈现两个区域的随机点作为次要刺激; 受试者需要注意主要刺激中的一种运动方向, 并对次要刺激完成一个一致性运动检测任务。C: Zhang和Luck (2009)采用的探针刺激范式示意图; 在一侧视野内呈现空间上重叠的两种颜色的随机点, 要求受试者注意其中一种颜色, 同时忽略另一侧视野的探针刺激。D: Painter等人(2014)的探针刺激范式示意图; 受试者在中央视野根据颜色特征完成视觉搜索任务, 同时在外周视野呈现3种颜色(包括两种中央视野的颜色和另一种只呈现在外周视野的颜色)的棋盘格图案, 3种颜色分别以3种频率闪烁。E: Forschack等人(2017)的探针刺激范式示意图; 在中央视野呈现空间上重叠的红色和蓝色的随机点, 在两侧的外周视野则分别单独呈现红色及蓝色的随机点。
图2支持特征注意全局性增强机制的实证性证据。A: Saenz等人(2003)的分散注意任务范式示意图; 受试者在每侧视野内注意其中一种运动方向的随机点, 并同时完成运动速度变化的检测任务。结果发现, 注意相同特征条件下受试者的正确率显著高于注意不同特征条件。B: White和Carrasco (2011)的分散注意任务范式示意图; 一侧视野会呈现向上和向下运动的重叠随机点作为主要刺激, 在另一侧视野会呈现两个区域的随机点作为次要刺激; 受试者需要注意主要刺激中的一种运动方向, 并对次要刺激完成一个一致性运动检测任务。C: Zhang和Luck (2009)采用的探针刺激范式示意图; 在一侧视野内呈现空间上重叠的两种颜色的随机点, 要求受试者注意其中一种颜色, 同时忽略另一侧视野的探针刺激。D: Painter等人(2014)的探针刺激范式示意图; 受试者在中央视野根据颜色特征完成视觉搜索任务, 同时在外周视野呈现3种颜色(包括两种中央视野的颜色和另一种只呈现在外周视野的颜色)的棋盘格图案, 3种颜色分别以3种频率闪烁。E: Forschack等人(2017)的探针刺激范式示意图; 在中央视野呈现空间上重叠的红色和蓝色的随机点, 在两侧的外周视野则分别单独呈现红色及蓝色的随机点。



图3支持特征注意全局性抑制机制的实证性证据。A: Moher等(2014)增加了中性颜色的探针刺激, 结果发现相比于中性颜色探针刺激, 与干扰颜色相匹配的探针刺激诱发的P1振幅更小, 而与目标颜色相匹配的探针刺激诱发的P1振幅没有显著增加。B: Störmer和Alvarez (2014)操作了注意特征之间的相似程度, 发现在特征空间内, 与注意特征差异较小或差异最大的非注意特征会受到更强烈的全局性抑制。
图3支持特征注意全局性抑制机制的实证性证据。A: Moher等(2014)增加了中性颜色的探针刺激, 结果发现相比于中性颜色探针刺激, 与干扰颜色相匹配的探针刺激诱发的P1振幅更小, 而与目标颜色相匹配的探针刺激诱发的P1振幅没有显著增加。B: Störmer和Alvarez (2014)操作了注意特征之间的相似程度, 发现在特征空间内, 与注意特征差异较小或差异最大的非注意特征会受到更强烈的全局性抑制。



图4同时支持全局性增强机制和全局性抑制机制的实证性证据。A: Ho等(2012)在中央呈现内源性的线索, 并在4个象限内呈现朝某方向协同运动的随机点, 受试者需要搜索哪个位置的运动最明显。研究者通过操作无效线索与目标运动方向的相似性, 探究特征注意调制作用从增强到抑制的不同知觉结果。B: Andersen等(2013)的分散注意范式示意图:在实验一中视野两侧呈现红色和蓝色的随机点, 分为注意相同颜色和注意相反颜色两种条件; 而在实验二中视野两侧呈现4种不同颜色的随机点(只有注意不同颜色这一条件), 此时不存在潜在的全局性调制作用, 相当于基线条件。
图4同时支持全局性增强机制和全局性抑制机制的实证性证据。A: Ho等(2012)在中央呈现内源性的线索, 并在4个象限内呈现朝某方向协同运动的随机点, 受试者需要搜索哪个位置的运动最明显。研究者通过操作无效线索与目标运动方向的相似性, 探究特征注意调制作用从增强到抑制的不同知觉结果。B: Andersen等(2013)的分散注意范式示意图:在实验一中视野两侧呈现红色和蓝色的随机点, 分为注意相同颜色和注意相反颜色两种条件; 而在实验二中视野两侧呈现4种不同颜色的随机点(只有注意不同颜色这一条件), 此时不存在潜在的全局性调制作用, 相当于基线条件。







1 Amer T., Campbell K. L., & Hasher L . ( 2016). Cognitive control as a double-edged sword. Trends in Cognitive Sciences, 20( 12), 905-915.
2 Andersen S. K., Hillyard S. A., & Müller M. M . ( 2008). Attention facilitates multiple stimulus features in parallel in human visual cortex. Current Biology, 18( 13), 1006-1009.
3 Andersen S. K., Hillyard S. A., & Müller M. M . ( 2013). Global facilitation of attended features is obligatory and restricts divided attention. Journal of Neuroscience, 33( 46), 18200-18207.
4 Andersen, S. K., & Müller, M. M . ( 2010). Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention. Proceedings of the National Academy of Sciences, 107( 31), 13878-13882.
5 Andersen S. K., Müller M. M., & Hillyard S. A . ( 2015). Attentional selection of feature conjunctions is accomplished by parallel and independent selection of single features. Journal of Neuroscience, 35( 27), 9912-9919.
6 Bartsch M. V., Boehler C. N., Stoppel C. M., Merkel C., Heinze H. J., Schoenfeld M. A., & Hopf J. M . ( 2015). Determinants of global color-based selection in human visual cortex. Cerebral Cortex, 25( 9), 2828-2841.
7 Bartsch M. V., Donohue S. E., Strumpf H., Schoenfeld M. A., & Hopf J. M . ( 2018). Enhanced spatial focusing increases feature-based selection in unattended locations. Scientific Reports, 8( 1), 16132.
8 Bartsch M. V., Loewe K., Merkel C., Heinze H. J., Schoenfeld M. A., Tsotsos J. K., & Hopf J. M . ( 2017). Attention to color sharpens neural population tuning via feedback processing in the human visual cortex hierarchy. Journal of Neuroscience, 37( 43), 10346-10357.
9 Becker M. W., Hemsteger S., & Peltier C . ( 2015). No templates for rejection: A failure to configure attention to ignore task-irrelevant features. Visual Cognition, 23( 9-10), 1150-1167.
10 Berggren, N., & Eimer, M . ( 2018). Electrophysiological correlates of active suppression and attentional selection in preview visual search. Neuropsychologia, 120, 75-85.
11 Boynton G. M., Ciaramitaro V. M., & Arman A. C . ( 2006). Effects of feature-based attention on the motion aftereffect at remote locations. Vision Research, 46( 18), 2968-2976.
12 Bridwell, D. A., & Srinivasan, R . ( 2012). Distinct attention networks for feature enhancement and suppression in vision. Psychological Science, 23( 10), 1151-1158.
13 Brummerloh, B., & Müller, M. M . ( 2019). Time matters: Feature-specific prioritization follows feature integration in visual object processing. NeuroImage, 196, 81-93.
14 Carrasco, M . ( 2011). Visual attention: The past 25 years. Vision Research, 51( 13), 1484-1525.
15 Conci M., Deichsel C., Müller H. J., & T?llner T . ( 2019). Feature guidance by negative attentional templates depends on search difficulty. Visual Cognition, 27, 317-326.
16 Cunningham, C. A., & Egeth, H. E . ( 2016). Taming the white bear: Initial costs and eventual benefits of distractor inhibition. Psychological Science, 27( 4), 476-485.
17 Daffner K. R., Zhuravleva T. Y., Sun X., Tarbi E. C., Haring A. E., Rentz D. M., & Holcomb P. J . ( 2012). Does modulation of selective attention to features reflect enhancement or suppression of neural activity?. Biological Psychology, 89( 2), 398-407.
18 Desimone, R., & Duncan, J . ( 1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18( 1), 193-222.
19 Drew, T., & Stothart, C . ( 2016). Clarifying the role of target similarity, task relevance and feature-based suppression during sustained inattentional blindness. Journal of Vision, 16( 15), 1-9.
20 Eimer, M . ( 2014). The neural basis of attentional control in visual search. Trends in Cognitive Sciences, 18( 10), 526-535.
21 Forschack N., Andersen S. K., & Müller M. M . ( 2017). Global enhancement but local suppression in feature-based attention. Journal of Cognitive Neuroscience, 29( 4), 619-627.
22 Gaspelin, N., & Luck, S. J . ( 2018). The role of inhibition in avoiding distraction by salient stimuli. Trends in Cognitive Sciences, 22( 1), 79-92.
23 Geng, J. J . ( 2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23( 2), 147-153.
24 Geng J. J., DiQuattro N. E., & Helm J . ( 2017). Distractor probability changes the shape of the attentional template. Journal of Experimental Psychology: Human Perception and Performance, 43( 12), 1993-2007.
25 Grubert, A., & Eimer, M . ( 2015). Rapid parallel attentional target selection in single-color and multiple-color visual search. Journal of Experimental Psychology: Human Perception and Performance, 41( 1), 86-101.
26 Han, S. W., & Kim, M. S . ( 2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35( 5), 1292-1302.
27 Herrmann K., Heeger D. J., & Carrasco M . ( 2012). Feature-based attention enhances performance by increasing response gain. Vision Research, 74, 10-20.
28 Hickey C., Di Lollo V., & McDonald J. J . ( 2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21( 4), 760-775.
29 Ho T. C., Brown S., Abuyo N. A., Ku E. H. J., & Serences J. T . ( 2012). Perceptual consequences of feature-based attentional enhancement and suppression. Journal of Vision, 12( 8), 1-17.
30 Hu L., Ding Y., & Qu Z . ( 2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56( 9), e13393.
31 Huang W., Su Y., Zhen Y., & Qu Z . ( 2016). The role of top‐down spatial attention in contingent attentional capture. Psychophysiology, 53( 5), 650-662.
32 Irons J. L., Folk C. L., & Remington R. W . ( 2012). All set! Evidence of simultaneous attentional control settings for multiple target colors. Journal of Experimental Psychology: Human Perception and Performance, 38( 3), 758-775.
33 Jenkins M., Grubert A., & Eimer M . ( 2017). Target objects defined by a conjunction of colour and shape can be selected independently and in parallel. Attention, Perception, & Psychophysics, 79( 8), 2310-2326.
34 Keil, A., & Müller, M. M . ( 2010). Feature selection in the human brain: Electrophysiological correlates of sensory enhancement and feature integration. Brain Research, 1313, 172-184.
35 Klimesch, W . ( 2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16( 12), 606-617.
36 Kozyrev V., Daliri M. R., Schwedhelm P., & Treue S . ( 2019). Strategic deployment of feature-based attentional gain in primate visual cortex. PLoS Biology, 17( 8), e3000387.
37 Lee J., Leonard C. J., Luck S. J., & Geng J. J . ( 2018). Dynamics of feature-based attentional selection during color-shape conjunction search. Journal of Cognitive Neuroscience, 30( 12), 1773-1787.
38 Lenartowicz A., Simpson G. V., Haber C. M., & Cohen M. S . ( 2014). Neurophysiological signals of ignoring and attending are separable and related to performance during sustained intersensory attention. Journal of Cognitive Neuroscience, 26( 9), 2055-2069.
39 Leonard C. J., Balestreri A., & Luck S. J . ( 2015). Interactions between space-based and feature-based attention. Journal of Experimental Psychology: Human Perception and Performance, 41( 1), 11-16.
40 Ling S., Liu T., & Carrasco M . ( 2009). How spatial and feature-based attention affect the gain and tuning of population responses. Vision Research, 49( 10), 1194-1204.
41 Liu, T., & Hou, Y . ( 2011). Global feature-based attention to orientation. Journal of Vision, 11( 10), 1-8.
42 Liu T., Larsson J., & Carrasco M . ( 2007). Feature-based attention modulates orientation-selective responses in human visual cortex. Neuron, 55( 2), 313-323.
43 Liu, T., & Mance, I . ( 2011). Constant spread of feature-based attention across the visual field. Vision Research, 51( 1), 26-33.
44 Martinez-Trujillo, J. C., & Treue, S . ( 2004). Feature-based attention increases the selectivity of population responses in primate visual cortex. Current Biology, 14( 9), 744-751.
45 Maunsell, J. H., & Treue, S . ( 2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29( 6), 317-322.
46 Maunsell, J. H . ( 2015). Neuronal mechanisms of visual attention. Annual Review of Vision Science, 1, 373-391.
47 McAdams, C. J., & Maunsell, J. H . ( 1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19( 1), 431-441.
48 Moher J., Lakshmanan B. M., Egeth H. E., & Ewen J. B . ( 2014). Inhibition drives early feature-based attention. Psychological Science, 25( 2), 315-324.
49 Moore, T., & Zirnsak, M . ( 2017). Neural mechanisms of selective visual attention. Annual Review of Psychology, 68, 47-72.
50 Müller M. M., Gundlach C., Forschack N., & Brummerloh B . ( 2018). It takes two to tango: Suppression of task-irrelevant features requires (spatial) competition. NeuroImage, 178, 485-492.
51 Noonan M. P., Adamian N., Pike A., Printzlau F., Crittenden B. M., & Stokes M. G . ( 2016). Distinct mechanisms for distractor suppression and target facilitation. Journal of Neuroscience, 36( 6), 1797-1807.
52 Noonan M. P., Crittenden B. M., Jensen O., & Stokes M. G . ( 2018). Selective inhibition of distracting input. Behavioural Brain Research, 355, 36-47.
53 Painter D. R., Dux P. E., Travis S. L., & Mattingley J. B . ( 2014). Neural responses to target features outside a search array are enhanced during conjunction but not unique-feature search. Journal of Neuroscience, 34( 9), 3390-3401.
54 Polk T. A., Drake R. M., Jonides J. J., Smith M. R., & Smith E. E . ( 2008). Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: A functional magnetic resonance imaging study of the Stroop task. Journal of Neuroscience, 28( 51), 13786-13792.
55 Saenz M., Buracas G. T., & Boynton G. M . ( 2002). Global effects of feature-based attention in human visual cortex. Nature Neuroscience, 5( 7), 631-632.
56 Saenz M., Buracas G. T., & Boynton G. M . ( 2003). Global feature-based attention for motion and color. Vision Research, 43( 6), 629-637.
57 Sawaki, R., & Luck, S. J . ( 2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72( 6), 1455-1470.
58 Schmidt, F., & Schmidt, T . ( 2010). Feature-based attention to unconscious shapes and colors. Attention, Perception, & Psychophysics, 72( 6), 1480-1494.
59 Serences, J. T., & Boynton, G. M . ( 2007). Feature-based attentional modulations in the absence of direct visual stimulation. Neuron, 55( 2), 301-312.
60 Serences J. T., Saproo S., Scolari M., Ho T., & Muftuler L. T . ( 2009). Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions. Neuroimage, 44( 1), 223-231.
61 Slagter H. A., Prinssen S., Reteig L. C., & Mazaheri A . ( 2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125, 25-35.
62 St?rmer, V. S., & Alvarez, G. A . ( 2014). Feature-based attention elicits surround suppression in feature space. Current Biology, 24( 17), 1985-1988.
63 Tootell R. B., Reppas J. B., Dale A. M., Look R. B., Sereno M. I., Malach R., .. Rosen B. R . ( 1995). Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature, 375( 6527), 139-141.
64 Treue, S., & Maunsell, J. H . ( 1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382( 6591), 539-541.
65 Treue, S., & Maunsell, J. H . ( 1999). Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. Journal of Neuroscience, 19( 17), 7591-7602.
66 Treue, S., & Trujillo, J. C. M . ( 1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399( 6736), 575-579.
67 van Diepen R. M., Miller L. M., Mazaheri A., & Geng J. J . ( 2016). The role of alpha activity in spatial and feature- based attention. Eneuro, 3( 5).
68 Wang Y., Miller J., & Liu T . ( 2015). Suppression effects in feature-based attention. Journal of Vision, 15( 5), 1-16.
69 Wegener D., Ehn F., Aurich M. K., Galashan F. O., & Kreiter A. K . ( 2008). Feature-based attention and the suppression of non-relevant object features. Vision Research, 48( 27), 2696-2707.
70 Wen W., Hou Y., & Li S . ( 2018). Memory guidance in distractor suppression is governed by the availability of cognitive control. Attention, Perception, & Psychophysics, 80( 5), 1157-1168.
71 White, A. L., & Carrasco, M . ( 2011). Feature-based attention involuntarily and simultaneously improves visual performance across locations. Journal of Vision, 11( 6), 1-10.
72 Wolfe, J. M., & Horowitz, T. S . ( 2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1( 3), 0058.
73 Xiao G., Xu G., Liu X., Xu J., Wang F., Li L., .. Lu J . ( 2014). Feature-based attention is independent of object appearance. Journal of Vision, 14( 1), 1-11.
74 Zanto, T. P., & Rissman, J . ( 2015). Top-down suppression. Brain Mapping, 261-267.
75 Zhang, W., & Luck, S. J . ( 2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12( 1), 24-25.
76 Zirnsak, M., & Hamker, F. H . ( 2010). Attention alters feature space in motion processing. Journal of Neuroscience, 30( 20), 6882-6890.




[1]张明;陈骐. 记忆提取研究的新进展[J]. 心理科学进展, 2002, 10(2): 133-146.





PDF全文下载地址:

http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=5015
相关话题/运动 中央 空间 视觉 实验

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 空间频率影响恐惧面孔表情加工的神经通路
    贺则宇,张紫琦,李可轩,何蔚祺()辽宁师范大学脑与认知神经科学研究中心,大连116029收稿日期:2019-06-20出版日期:2020-04-15发布日期:2020-02-24通讯作者:何蔚祺E-mail:weiqi79920686@sina.com基金资助:国家自然科学基金面上项目(319709 ...
    本站小编 Free考研考试 2022-01-01
  • 手势认知功能研究的新视角:“空间化”手势假设
    于文华1,鲁忠义2()1河北师范大学学前教育学院2河北师范大学教育学院心理系,石家庄050024收稿日期:2018-09-20出版日期:2020-03-15发布日期:2020-01-18通讯作者:鲁忠义E-mail:zhongyilu@126.com基金资助:&国家自然科学基金资助项 ...
    本站小编 Free考研考试 2022-01-01
  • 行为干预情绪记忆再巩固:从实验室到临床转化
    陈伟1,2,3,李俊娇4,林小裔1,张晓霞1,郑希付1,2,3()1华南师范大学心理学院2华南师范大学心理应用研究中心,广州5106313广东省心理健康与认知科学重点实验室,广州5106314广东第二师范学院教师教育学院,广州510303收稿日期:2019-05-12出版日期:2020-02-15发 ...
    本站小编 Free考研考试 2022-01-01
  • 孤独症谱系障碍者视觉定向与视觉搜索的特点及神经机制
    陈晓雯,蔡文淑,谢桐,傅世敏()广州大学教育学院心理系/脑与认知科学中心,广州510006收稿日期:2019-04-17出版日期:2020-01-15发布日期:2019-11-21通讯作者:傅世敏E-mail:fusm@gzhu.edu.cn基金资助:国家自然科学基金资助项目(31970993)Th ...
    本站小编 Free考研考试 2022-01-01
  • 空间导航的测量及其在认知老化中的应用
    张家鑫,海拉干,李会杰()中国科学院行为科学重点实验室(中国科学院心理研究所),北京100101;中国科学院大学心理学系,北京100049收稿日期:2019-04-17出版日期:2019-12-15发布日期:2019-10-21通讯作者:李会杰E-mail:lihj@psych.ac.cn基金资助: ...
    本站小编 Free考研考试 2022-01-01
  • 视觉工作记忆的巩固加工:时程、模式及机制
    龙芳芳,李昱辰,陈晓宇,李子媛,梁腾飞,刘强()辽宁师范大学脑与认知神经科学研究中心,大连116029收稿日期:2018-09-28出版日期:2019-07-26发布日期:2019-06-25通讯作者:刘强E-mail:lq780614@163.com基金资助:*国家自然科学基金(31571123) ...
    本站小编 Free考研考试 2022-01-01
  • 发展性阅读障碍的视觉注意广度技能
    赵婧()首都师范大学心理学院,北京市“学习与认知”重点实验室,北京100037收稿日期:2018-04-16出版日期:2019-01-15发布日期:2018-11-23基金资助:*国家自然科学基金项目(31500903)Skillsofvisualattentionspanindevelopment ...
    本站小编 Free考研考试 2022-01-01
  • 语义和句法信息在副中央凹加工中的作用
    臧传丽(),鹿子佳,张志超天津师范大学心理与行为研究院,天津300074收稿日期:2018-04-17出版日期:2019-01-15发布日期:2018-11-23基金资助:*国家自然科学基金项目(31571122,81471629,31600902);天津市人才发展特殊支持计划青年拔尖人才项目和天津 ...
    本站小编 Free考研考试 2022-01-01
  • 橡胶手错觉:拥有感研究的实验范式及其应用
    赵佩琼1,陈巍1,2(),张静3(),平贤洁21绍兴文理学院社会行为与发展科学研究中心2绍兴文理学院心理学系,绍兴3120003杭州电子科技大学心理健康研究所,杭州310018收稿日期:2018-05-11出版日期:2019-01-15发布日期:2018-11-23基金资助:*国家社科基金青年项目( ...
    本站小编 Free考研考试 2022-01-01
  • 研究争论:空间注意是否调制C1成分?
    傅世敏(),陈晓雯,刘雨琪广州大学教育学院心理系,脑与认知科学中心,广州510006收稿日期:2018-06-20出版日期:2018-11-15发布日期:2018-09-26通讯作者:傅世敏E-mail:fusm@gzhu.edu.cn基金资助:*国家自然科学基金资助项目(31371142)Rese ...
    本站小编 Free考研考试 2022-01-01