), 陈晓雯, 刘雨琪 广州大学教育学院心理系, 脑与认知科学中心, 广州 510006
收稿日期:2018-06-20出版日期:2018-11-15发布日期:2018-09-26通讯作者:傅世敏E-mail:fusm@gzhu.edu.cn基金资助:* 国家自然科学基金资助项目(31371142)Research debate: Does spatial attention modulate C1 component?
FU Shimin(
), CHEN Xiaowen, LIU Yuqi Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China
Received:2018-06-20Online:2018-11-15Published:2018-09-26Contact:FU Shimin E-mail:fusm@gzhu.edu.cn摘要/Abstract
摘要: 视觉注意的事件相关电位研究中, 对源于V1的C1成分是否受空间注意调制存在争议。多数派观点认为C1不受空间注意直接调制, 但存在对V1的延迟反馈调节; 少数派观点则认为在一定的实验条件下, 空间注意可以在视觉信息加工的早期前馈加工阶段直接调制C1成分。近期双方就此问题展开了讨论。本综述中, 我们首先概述了双方基本观点和实验证据。其次, 简要概括了C1注意效应的多个影响因素。再次, 就近期关于C1注意效应的可重复性、注意负载与知觉负载对诱发C1注意效应的作用、极性翻转与源于V1的关系这三方面的争论进行了述评。最后, 针对该研究争论我们提出了两个原创性观点:其一, 需以开放而又谨慎的态度对待C1注意效应; 其二, 有些方法和技巧可能有助于观察到潜在的C1注意效应。综上, 多数派观点已得到大量实验证据支持, 而少数派观点尚需提供更加决定性的实验证据; 该项争论还将继续。
参考文献 55
| [1] | 陈建, 袁杰, 汪海玲, 王妍, 傅世敏 . ( 2013). C1 调制效应的理论评述及影响因素. 心理科学进展, 21( 3), 407-417 doi: 10.3724/SP.J.1042.2013.00407URL |
| [2] | Ales, J. M., Yates, J. L., & Norcia, A. M. ( 2010). V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli. Neuroimage, 52( 4), 1401-1409. doi: 10.1016/j.neuroimage.2010.05.016URL |
| [3] | Ales, J. M., Yates, J. L., & Norcia, A. M. ( 2013). On determining the intercranial sources of visual evoked potentials from scalp topography: A reply to Kelly et al. (this issue). Neuroimage, 64, 703-711. doi: 10.1016/j.neuroimage.2012.09.009URL |
| [4] | Bahrami, B., Carmel, D., Walsh, V., Rees, G., & Lavie, N. ( 2008). Spatial attention can modulate unconscious orientation processing. Perception, 37( 10), 1520-1528. doi: 10.1068/p5999URLpmid: 19065856 |
| [5] | Baumgartner, H. M., Graulty, C. J., Hillyard, S. A., & Pitts, M. A. ( 2018). Does spatial attention modulate the C1 component? The jury continues to deliberate. Cognitive Neuroscience, 9( 1-2), 34-37. doi: 10.1080/17588928.2017.1386169URLpmid: 28956499 |
| [6] | Bayer, M., Rossi, V., Vanlessen, N., Grass, A., Schacht, A., & Pourtois, G. ( 2017). Independent effects of motivation and spatial attention in the human visual cortex. Social Cognitive and Affective Neuroscience, 12( 1), 146-156. |
| [7] | Clark, V.P., & Hillyard, S.A . ( 1996). Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. Journal of Cognitive Neuroscience, 8( 5), 387-402. doi: 10.1162/jocn.1996.8.5.387URL |
| [8] | Dassanayake, T. L., Michie, P. T., & Fulham, R. ( 2016). Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex. International Journal of Psychophysiology, 105, 9-16. doi: 10.1016/j.ijpsycho.2016.04.007URL |
| [9] | Desimone, R., & Duncan, J.( 1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222. doi: 10.1146/annurev.ne.18.030195.001205URL |
| [10] | Di Russo, F., Martinez, A., & Hillyard, S. A. ( 2003). Source analysis of event-related cortical activity during visuo- spatial attention. Cerebral Cortex, 13( 5), 486-499. doi: 10.1093/cercor/13.5.486URL |
| [11] | Ding, Y. L., Martinez, A., Qu, Z., & Hillyard, S. A. ( 2014). Earliest stages of visual cortical processing are not modified by attentional load. Human Brain Mapping, 35( 7), 3008-3024. doi: 10.1002/hbm.22381URL |
| [12] | Fu, S.M. ( 2018a). Open and cautious towards the “minority view”. Cognitive Neuroscience, 9( 1-2), 28-30. |
| [13] | Fu, S.M. ( 2018b). ‘Tricks’ for revealing potential attentional modulations on the C1 component. Cognitive Neuroscience, 9( 1-2), 63-64. doi: 10.1080/17588928.2017.1384376URLpmid: 28944720 |
| [14] | Fu, S. M., Caggiano, D. M., Greenwood, P. M., & Parasuraman, R. ( 2005b). Event-related potentials reveal dissociable mechanisms for orienting and focusing visuospatial attention. Cognitive Brain Research, 23( 2-3), 341-353. doi: 10.1016/j.cogbrainres.2004.11.014URL |
| [15] | Fu, S. M.,Fan, S. L.,Chen, L., & Zhuo, Y. ( 2001). The attentional effects of peripheral cueing as revealed by two event-related potential studies. Clinical Neurophysiology, 112( 1), 172-185. doi: 10.1016/S1388-2457(00)00500-9URLpmid: 11137676 |
| [16] | Fu, S. M., Fedota, J., Greenwood, P. M., & Parasuraman, R. ( 2010a). Early interaction between perceptual load and involuntary attention: An event-related potential study. Neuroscience Letters, 468( 1), 68-71. doi: 10.1016/j.neulet.2009.10.065URL |
| [17] | Fu, S. M., Fedota, J. R., Greenwood, P. M., & Parasuraman, R. ( 2010b). Dissociation of visual C1 and P1 components as a function of attentional load: an event-related potential study. Biological Psychology, 85( 1), 171-178. doi: 10.1016/j.biopsycho.2010.06.008URL |
| [18] | Fu, S. M., Fedota, J. R., Greenwood, P. M., & Parasuraman, R. ( 2012). Attentional load is not a critical factor for eliciting C1 attentional effect - A reply to Rauss, Pourtois, Vuillenumier, and Schwartz. Biological Psychology, 91( 2), 321-324. doi: 10.1016/j.biopsycho.2012.03.012URL |
| [19] | Fu, S.M.,Greenwood, P.M., & Parasuraman, R.( 2005a). Brain mechanisms of involuntary visuospatial attention: An event-related potential study. Human Brain Mapping, 25( 4), 378-390. doi: 10.1002/(ISSN)1097-0193URL |
| [20] | Fu, S. M., Huang, Y. X., Luo, Y. J., Wang, Y., Fedota, J., Greenwood, P. M., & Parasuraman, R. ( 2009). Perceptual load interacts with involuntary attention at early processing stages: Event-related potential studies. Neuroimage, 48( 1), 191-199. doi: 10.1016/j.neuroimage.2009.06.028URL |
| [21] | Fu, S. M., Zinni, M., Squire, P. N., Kumar, R., Caggiano, D. M., & Parasuraman, R. ( 2008). When and where perceptual load interacts with voluntary visuospatial attention: An event-related potential and dipole modeling study. Neuroimage, 39( 3), 1345-1355. doi: 10.1016/j.neuroimage.2007.09.068URL |
| [22] | Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., ... Hillyard, S. A. ( 1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543-546. doi: 10.1038/372543a0URL |
| [23] | Herde, L., Rossi, V., Pourtois, G., & Rauss, K. ( 2018). Early retinotopic responses to violations of emotion-location associations may depend on conscious awareness. Cognitive Neuroscience, 9( 1-2), 38-55. doi: 10.1080/17588928.2017.1338250URL |
| [24] | Hillyard, S. A., Vogel, E. K., & Luck, S. J. ( 1998). Sensory gain control (amplification) as a mechanism of selective attention: Electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 353( 1373), 1257-1270. doi: 10.1098/rstb.1998.0281URL |
| [25] | Hopfinger, J.B., & Mangun, G.R . ( 1998). Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychological Science, 9( 6), 441-447. doi: 10.1111/1467-9280.00083URLpmid: 4552358 |
| [26] | Jeffreys, D.A., & Axford, J.G . ( 1972a). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Experimental Brain Research, 16( 1), 1-21. |
| [27] | Jeffreys, D.A., & Axford, J.G . ( 1972b). Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Experimental Brain Research, 16( 1), 22-40. |
| [28] | Jin, H., Xu, G. P., Zhang, J. X., Ye, Z., Wang, S. F., Zhao, L., ... Mo, L. ( 2010). Athletic training in badminton players modulates the early C1 component of visual evoked potentials: A preliminary investigation. International Journal of Psychophysiology, 78( 3), 308-314. doi: 10.1016/j.ijpsycho.2010.09.005URL |
| [29] | Karns, C.M., & Knight, R.T . ( 2009). Intermodal auditory, visual, and tactile attention modulates early stages of neural processing. Journal of Cognitive Neuroscience, 21( 4), 669-683. doi: 10.1162/jocn.2009.21037URL |
| [30] | Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. ( 2008). Spatial attention modulates initial afferent activity in human primary visual cortex. Cerebral Cortex, 18( 11), 2629-2636. doi: 10.1093/cercor/bhn022URL |
| [31] | Kelly, S. P., Vanegas, M. I., Schroeder, C. E., & Lalor, E. C. ( 2013). The cruciform model of striate generation of the early VEP, re-illustrated, not revoked: A reply to Ales et al. (2013). Neuroimage, 82, 154-159. doi: 10.1016/j.neuroimage.2013.05.112URL |
| [32] | Khoe, W., Mitchell, J. F., Reynolds, J. H., & Hillyard, S. A. ( 2005). Exogenous attentional selection of transparent superimposed surfaces modulates early event-related potentials. Vision Research, 45( 24), 3004-3014. doi: 10.1016/j.visres.2005.04.021URL |
| [33] | Kok, P., Rahnev, D., Jehee, J. F. M., Lau, H. C., & De Lange, F. P..( 2012). Attention reverses the effect of prediction in silencing sensory signals. Cerebral Cortex, 22( 9), 2197-2206. doi: 10.1093/cercor/bhr310URL |
| [34] | Lavie, N.( 1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology Human Perception and Performance, 21( 3), 451-468. doi: 10.1037/0096-1523.21.3.451URL |
| [35] | Lavie, N., & Tsal, Y.( 1994). Perceptual load as a major determinant of the locus of selection in visual-attention. Perception & Psychophysics, 56( 2), 183-197. doi: 10.3758/BF03213897URLpmid: 7971119 |
| [36] | Luck, S. J. ( 2005). The Design and interpretation of ERP experiments. In M. S. Gazzaniga (Eds) An introduction to the event-relatedpotential technique. (51-98). Massachusetts: MIT Press,. |
| [37] | Martínez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., ... Hillyard, S. A. ( 1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364-369. doi: 10.1038/7274URL |
| [38] | Martínez, A., DiRusso, F., Anllo-Vento, L., Sereno, M. I., Buxton, R. B., & Hillyard, S. A. ( 2001a). Putting spatial attention on the map: Timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Research, 41( 10-11), 1437-1457. doi: 10.1016/S0042-6989(00)00267-4URL |
| [39] | Motter, B.C. ( 1993). Focal attention produces spatially seletive processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70( 3), 909-919. doi: 10.1152/jn.1993.70.3.909URL |
| [40] | Müller, H.J., & Rabbitt, P. M.A . ( 1989). Reflexive and voluntary orienting of visual attention: Timecourse of activation and resistance to interruption. Journal of Experimental Psychology: Human Perception & Performance, 15( 2), 315-330. |
| [41] | Poghosyan, V., & Ioannides, A.A. ( 2008). Attention modulates earliest responses in the primary auditory and visual cortices. Neuron, 58( 5), 802-813. doi: 10.1016/j.neuron.2008.04.013URL |
| [42] | Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. ( 2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14( 6), 619-633. doi: 10.1093/cercor/bhh023URL |
| [43] | Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30( 5), 1723-1733. doi: 10.1002/hbm.v30:5URL |
| [44] | Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2012a). Effects of attentional load on early visual processing depend on stimulus timing. Human Brain Mapping, 33( 1), 63-74. doi: 10.1002/hbm.21193URL |
| [45] | Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. ( 2012b). Voluntary attention reliably influences visual processing at the level of the C1 component: A commentary on Fu, Fedota, Greenwood, and Parasuram (2010). Biological Psychology, 91( 2), 325-327. doi: 10.1016/j.biopsycho.2012.03.013URL |
| [46] | Slagter, H. A., Alilovic, J., & Van Gaal, S. ( 2017). How early does attention modulate visual information processing? The importance of experimental protocol and data analysis approach. Cognitive Neuroscience, 9( 1-2), 26-28. |
| [47] | Slotnick, S.D. ( 2013). The nature of attentional modulation in V1. In S. Slotnick (Eds.), Controversies in Cognitive Neuroscience ( pp. 44-69). New York, NY:Palgrave Macmillan. |
| [48] | Slotnick, S.D. ( 2018). The experimental parameters that affect attentional modulation of the ERP C1 component. Cognitive Neuroscience, 9( 1-2), 53-62. doi: 10.1080/17588928.2017.1369021URL |
| [49] | St?ni?or, L., Van Der Togt, C., Pennartz, C. M. A., & Roelfsema, P. R. ( 2013). A unified selection signal for attention and reward in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 110( 22), 9136-9141. doi: 10.1073/pnas.1300117110URL |
| [50] | Sylvester, C. M., Shulman, G. L., Jack, A. I., & Corbetta, M. ( 2009). Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal. The Journal of Neuroscience, 29( 34), 10671-10682. doi: 10.1523/JNEUROSCI.1141-09.2009URL |
| [51] | Watanabe, M., Cheng, K., Murayama, Y., Ueno, K., Asamizuya, T., Tanaka, K., & Logothetis, N. ( 2011). Attention but not awareness modulates the BOLD signal in the human V1 during binocular suppression. Science, 334( 6057), 829-831. doi: 10.1126/science.1203161URL |
| [52] | Woldorff, M. G., Fox, P. T., Matzke, M., Lancaster, J. L., Veeraswamy, S., Zamarripa, F., ... Jerabek, P. ( 1997). Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Human Brain Mapping, 5( 4), 280-286. doi: 10.1002/(SICI)1097-0193(1997)5:4<>1.0.CO;2-TURL |
| [53] | Zani, A., & Proverbio, A.M. ( 2003). Chapter 1 - Cognitive electrophysiology of mind and brain. Cognitive Electrophysiology of Mind & Brain, 3-12. |
| [54] | Zhang, X. L., Zhao, P. L., Zhou, T. G., & Fang, F. ( 2012). Neural activities in V1 create a bottom-up saliency map. Neuron, 73( 1), 183-192. doi: 10.1016/j.neuron.2011.10.035URLpmid: 22243756 |
| [55] | Zhu, X.R., & Luo, Y.J . ( 2012). Fearful faces evoke a larger C1 than happy faces in executive attention task: An event-related potential study. Neuroscience Letters, 526( 2), 118-121. doi: 10.1016/j.neulet.2012.08.011URL |
相关文章 15
| [1] | 何嘉梅, 金磊. 目标概念的辨析及其对决策的影响[J]. 心理科学进展, 2021, 29(8): 1410-1419. |
| [2] | 荆伟, 张婕, 付锦霞, 田琳, 赵微. 婴幼儿面孔注意偏向:先天倾向与发展轨迹——来自正常和孤独症婴幼儿的证据[J]. 心理科学进展, 2021, 29(7): 1216-1230. |
| [3] | 任筱宇, 赵婧, 毕鸿燕. 动作视频游戏对发展性阅读障碍者阅读技能的影响及其内在机制[J]. 心理科学进展, 2021, 29(6): 1000-1009. |
| [4] | 孙国晓, 张力为. 竞赛压力、注意控制与运动表现关系的理论演进[J]. 心理科学进展, 2021, 29(6): 1122-1130. |
| [5] | 白玉, 杨海波. 创伤后应激障碍个体对威胁刺激的注意偏向:眼动研究的证据[J]. 心理科学进展, 2021, 29(4): 737-746. |
| [6] | 章小丹, 张沥今, 丁玉珑, 曲折. 注意过程中的行为振荡现象[J]. 心理科学进展, 2021, 29(3): 460-471. |
| [7] | 霍鹏辉, 冯成志, 陈庭继. 注视者及观察者因素对注视知觉的影响[J]. 心理科学进展, 2021, 29(2): 238-251. |
| [8] | 张帆, 陈艾睿, 董波, 王爱君, 张明. 视觉注意捕获的快速脱离假说与信号抑制假说[J]. 心理科学进展, 2021, 29(1): 45-55. |
| [9] | 刘启鹏, 赵小云, 王翠艳, 徐艺雅, 王淑燕. 反刍思维与注意脱离损坏的关系及其神经机制[J]. 心理科学进展, 2021, 29(1): 102-111. |
| [10] | 雷铭, 李朋波. 不同注意形式调节听感觉门控的神经机制[J]. 心理科学进展, 2020, 28(8): 1232-1245. |
| [11] | 范晓壮, 毕小彬, 谢宇, 贺荟中. 高功能自闭症个体对威胁性情绪面孔的注意偏向[J]. 心理科学进展, 2020, 28(7): 1172-1186. |
| [12] | 黄子立, 丁玉珑, 曲折. 特征注意的全局性调制作用——增强还是抑制?[J]. 心理科学进展, 2020, 28(4): 566-578. |
| [13] | 尤媛, 王莉. 儿童行为抑制性与心理障碍关联的认知神经过程[J]. 心理科学进展, 2020, 28(4): 612-625. |
| [14] | 贺淇, 王海英. 冥想对注意能力的影响[J]. 心理科学进展, 2020, 28(2): 284-293. |
| [15] | 冉光明, 李睿, 张琪. 高社交焦虑者识别动态情绪面孔的神经机制[J]. 心理科学进展, 2020, 28(12): 1979-1988. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4497
