1.Key Laboratory of Condensed Matter Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2.School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China 3.Songshan Lake Materials Laboratory, Dongguan 523808, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11974396) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33020300)
Received Date:23 August 2021
Accepted Date:30 September 2021
Available Online:28 October 2021
Published Online:05 December 2021
Abstract:Two-dimensional coherent spectroscopy (2DCS) diagnoses a material’s nonlinear optical response with multiple time variables, thus offering information that is inaccessible with conventional linear optical spectroscopy. The 2DCS in the infrared, visible, and ultraviolet frequency range has yielded fruitful results in chemistry and biology. In the terahertz (THz) frequency window, 2DCS has shown its promise in the study of strongly-correlated electronic systems. As a guide to this rapidly developing field, we survey the current status of the theory of THz-2DCS in strongly-correlated electronic systems. We then introduce the basic concepts and theoretical methods of 2DCS, and analyze the main characteristics of the two-dimensional spectra. Finally, we summarize our latest theoretical research in this field. Keywords:two-dimensional coherent spectroscopy/ strongly-correlated electronic system
沿用线性光谱的分析方法, 以上刘维尔路径(图3)可做如下解释. 图 3 非线性响应的刘维尔路径.$R_1$由图中红色实线表示 Figure3. Liouville paths of non-linear responce. $R_1$ is illustrated by the solid red line.
退相干衰减与失相导致的衰减都与$ t $有关, 因而无法被区分. 在频率空间, 线性谱描述了不同动量“自旋子”的连续谱, 而体系退相干时间的信息都隐藏在连续谱内(图4(a)和图4(f)). 图 4 横场伊辛模型铁磁相[$h/(h+J)=0.3$]的一维和二维光谱. 从上到下, (a)?(e)无耗散的结果$(1/T_{1, 2}=0)$; (f)?(j)有耗散的结果$(1/T_{1, 2}=0.2(J+h))$; (k)?(o)添加无序后的结果. 从左到右, 每列分别是${\boldsymbol{\chi}}^{(1)}_{xx}(\omega)$, 以及${\boldsymbol{\chi}}^{(2)}_{xxx}(t, t+\tau), \; {\boldsymbol{\chi}}^{(3)}_{xxxx}\times $$ (t, t+\tau, t+\tau),\; {\boldsymbol{\chi}}^{(3)}_{xxxx}(t, t, t+\tau)$的傅里叶变换, 以及沿着黑色箭头方向的信号轮廓(本图来自文献[13]) Figure4. One dimensional (1D) and two dimensional (2D) spectra in the FM phase [$h/(h+J)=0.3$] of the TFIC. From the top to bottom, the rows show (a)?(e) the case with no dissipation $(1/T_{1, 2}=0)$, (f)?(j) with dissipation $(1/T_{1, 2}=0.2(J+h))$, and (k)?(o) with quenched disorder. From the left to right, the columns show, respectively, ${\boldsymbol{\chi}}^{(1)}_{xx}(\omega)$, and the FTs of ${\boldsymbol{\chi}}^{(2)}_{xxx}(t, t+\tau)$, ${\boldsymbol{\chi}}^{(3)}_{xxxx}(t, t+\tau, t+\tau), \;{\boldsymbol{\chi}}^{(3)}_{xxxx}(t, t, t+\tau)$, and its profile along a cut indicated by the black arrow. (This figure is reprinted from ref. [13])
其中右侧第一项不随$ \tau $演化. 在频域空间, 这对应于$ w_t = 0 $并沿$ w_\tau $方向分布的条带(图4(b)). 条带随着$ T_1 $的减小而增宽, 因而可以来表征体系的弛豫时间. 右侧第二项随着$ t+\tau $振荡, 这说明体系经历失相过程, 由此带来的衰减与退相干引起的衰减混合在一起无法区分, 在频域空间对应于第一象限弥散的信号(图4(g)). 三阶非线性响应函数荷载更多信息. 对于图5(a)表示的脉冲序列, 非线性响应函数表达为 图 5 脉冲序列 (a)${\boldsymbol{\chi}}_{xxxx}^{(3)}(t_3, t_3+t_2, t_3+t_2+t_1)$对应的三脉冲过程以及“自旋子”回波过程$A_k^{(4)}$对应的刘维尔路径; (b) 作为三脉冲极限的两脉冲序列下的三阶响应${\boldsymbol{\chi}}^{(3)}$ (本图来自文献[13]) Figure5. Pulse sequences: (a) Three-pulse process associated with ${\boldsymbol{\chi}}_{xxxx}^{(3)}(t_3, t_3+t_2, t_3+t_2+t_1)$. The spinon echo process that produces the rephasing signal $A_k^{(4)}$ is also shown. (b) The ${\boldsymbol{\chi}}^{(3)}$ terms measured in the two-pulse setup are special limits of the three-pulse process. (This figure is reprinted from ref. [13])
4.拉廷格液体的二维相干光谱[18]第3节讨论了一个有能隙的强关联体系, 但本质上该模型可以映射为二能级体系系综, 进而使用双边费曼图等技巧进行分析. 这样的体系在本质上并未脱离针对分子体系的非线性光谱的分析框架. 为了讨论更一般的情形, Li等[18]考虑了S = 1/2的XXZ模型(图6(a),(b)), 这一模型在某些参数空间的激发是无能隙的, 自然不能简化为二能级体系系综: 图 6 (a) 法拉第构型示意图. 磁场沿$z$方向. 3个圆偏振短光脉冲通过自旋模型, 传播方向平行于$z$方向. 第1个光脉冲为右旋偏振, 第2和第3个光脉冲为左旋偏振. 第1和第2个光脉冲的时间间隔为$\tau$, 第2和第3个光脉冲的时间间隔为$t_w$, 第三个光脉冲和测量时间的时间间隔为$t$. (b) $t\approx \tau$时, 光子回波信号出现(本图来自文献[18]) Figure6. (a) The Faraday configuration. A magnetic field B is applied in the z axis. Three short electromagnetic pulses with circular polarizations pass through the S = 1/2 spin chain. The propagation direction is parallel with the spin z axis. The first pulse is right-handed, whereas the second and the third are left-handed. The time delay between the first and the second pulse is denoted by $\tau$, the second and the third by $t_w$, and the third pulse and the time of detection by $t$. (b) When $ t\approx\tau $ , photon echo appears. (This figure is reprinted from ref. [18])
(41)式说明${\boldsymbol{ \chi}}_{+--+}^{(3)}(t, t_w, \tau) $仅是$ t-\tau $的函数, 这是回波信号的表现. 考虑到解析结果只适用于三阶响应函数的渐近行为, Li等同时使用数值积分求解了(35)式. 在固定$ t_w $的前提下, 保留$ t $和$ \tau $为时间变量, 并将结果表达为(图7(a)—图7(c))中的二维光谱. Li等发现铁磁的${\boldsymbol{ \chi}}^{(3)} $是实的, 并且时域和频域的结果都说明$ {\boldsymbol{\chi}}_{+--+}^{(3)} $中存在回波信号. 反铁磁的渐近行为也表明反铁磁$ {\boldsymbol{\chi}}_{+--+}^{(3)}(t, t_w, \tau) $中存在回波信号. 图 7 (a) 以$\pi Tt, \pi T \tau$为自变量, 铁磁链的三阶非线性响应${\boldsymbol{\chi}}_{+--+}^{(3)}$. 固定$\pi Tt_w=1$, 拉廷格参数$K=1$. (b), (c) 分别是图(a)中数据傅里叶变换后二维光谱的实部和虚部(本图来自文献[18]) Figure7. (a) Nonlinear magnetic susceptibility ${\boldsymbol{\chi}}_{+--+}^{(3)}$ of a ferromagnetic chain as function of $\pi Tt$ and $\pi T\tau$. The waiting time $\pi T t_w=1$. The Luttinger parameter is $K=1$. (b), (c) The real and imaginary parts of two dimensional spectrum, obtained by Fourier transforming the data of panel (a). (This figure is reprinted from Ref. [18])
其中, $ \varDelta = 2 K+1/(2 K) $. 相比铁磁情形, 反铁磁${\boldsymbol{ \chi}}^{(3)}$在时域是复的, 这是因为磁化密度影响了自旋算符在玻色场中的表达. 同样, 数值积分的结果再一次确认了回波信号的存在(图8(a)—图8(d)). 与横场伊辛模型不同, XXZ模型不能写成二能级系综的形式, 因而二维相干光谱中的回波信号需要其他解释. 图 8 (a), (b) 以$\pi Tt, \;\pi T \tau$为自变量, 反铁磁链的三阶非线性响应${\boldsymbol{\chi}}_{+--+}^{(3)}$的实部和虚部. 固定$\pi Tt_w=1$, 拉廷格参数$K=1$, 磁化密度$2 mu/T=1.15$. (c), (d) 分别是二维相干光谱的实部和虚部(本图来自文献[18]) Figure8. (a), (b) The real and imaginary parts of Nonlinear magnetic susceptibility ${\boldsymbol{\chi}}_{+--+}^{(3)}$ of an antiferromagnetic chain as function of $\pi Tt$ and $\pi T\tau$. The waiting time $\pi T t_w=1$. The Luttinger parameter is $K=1$. The magnetization density$2 mu/T=1.15$. (c), (d) The real and imaginary parts of the two-dimensional spectrum. (This figure is reprinted from Ref. [18])
刘维尔路径中产生的“自旋子”与“反自旋子”全部抵消掉(图9(c)), 所以这一刘维尔路径不随$ t $衰减. Li等将这一过程命名为“透镜效应”, 这一效应正是回波信号的起源. Li等进一步检验了这一物理图像, 发现“透镜效应”对应的路径对响应函数贡献最大(图9(d)). 反铁磁也可做同样分析, 与铁磁不同, $ {\boldsymbol{S}}^+_j $产生一对“自旋子”和一对“劳弗林(Laughlin)准粒子”[31]. “透镜效应”在反铁磁情形中依然存在, 因而二维相干光谱中依然有回波信号. 图 9 (a) 两点关联函数中的“自旋子”产生湮灭过程. 实线代表“自旋子”的动力学过程. 虚线代表“反自旋子”的动力学过程. (b) 四点关联函数中的“自旋子”产生湮灭过程. (c) 四点关联函数中的“透镜效应”构型. (d) $\tilde{{\boldsymbol{\chi}}}_{+--+}^{(3)}$在图(c)阴影部分的行为(本图来自文献[18]) Figure9. (a) The spinon creation/annihilation process in two-point correlation function. Solid and dashed lines represent dynamical processes of spinon and antispinon respectively. (b) The spinon creation/annihilation process in four-point correlation function. (c) The “Lensing” configuration in four-point correlation function. (d) The behavior of the shaded area in panel (c). (This figure is reprinted from ref. [18])