1.Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117, China 2.School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11805022, 11803057).
Received Date:02 June 2021
Accepted Date:24 July 2021
Available Online:16 August 2021
Published Online:20 November 2021
Abstract:Research on the properties of neutron stars with strong magnetic fields is of great significance in constraining the equation of state and revealing the real distribution of magnetic fields in neutron stars. The main macroscopic properties of the traditional neutron star matter under β equilibrium condition are studied within the relativistic mean field theory through using the GL91 parameter set by considering the strong magnetic field. It is found that the onset of the strong magnetic field leads to the stiffened equation of state of the traditional neutron star matter. The maximum mass of the traditional neutron star grows from 2.111 M⊙ to 3.081 M⊙, the radius of the fixed mass traditional neutron star grows larger with the increase of internal magnetic field, which makes traditional neutron star become less dense. The strong magnetic field can also reduce the surface gravitational redshift and strengthen the moment of inertia of the traditional neutron star matter. In addition, the theoretical ranges of the surface gravitational redshift and the moment of inertia for the four massive PSRs J1614-2230, J0348+0432, J0740+6620 and J2215-5135, and the 2.50 M⊙ ? 2.67 M⊙ compact object in the binary merger event GW190814 are also given. The results show that the ranges of the surface redshift become narrower, while the scopes of the moment of inertia widen as the magnetizing field increases in the five stars. Keywords:neutron star/ strong magnetic field/ gravitational redshift/ moment of inertia
3.中子星宏观性质及数值结果四颗约2 M⊙质量的脉冲星PSRs J1614-2230 (1.908$ \pm $0.016 M⊙), J0348+0432 (2.01$ \pm $0.04 M⊙), J0740+6620 ($ {2.14}_{-0.18}^{+0.20} $ M⊙)和J2215-5135($ {2.28}_{-0.09}^{+0.10} $ M⊙) 相继被发现, 为大质量中子星的存在提供了强有力的验证[40-45]. 此外, 2019年, LIGO/Virgo发现双星合并引力波信号GW190814, 认为其中应该包含质量为2.5—2.67 M⊙的致密星体, 它或者是一颗大质量中子星或者是一颗小质量黑洞[46], 引力波探测并没有揭示它的性质, 而如果确定这颗致密星体是中子星将使中子星理论模型受到极大的挑战(本文将GW190814中致密星假设为一颗脉冲星进行讨论). 图1给出了强磁场环境下中子星物质压强随核子密度(曲线(a))、星体质量随半径(曲线(b))的变化. 从图1(a)可以看到, 无论有无磁场, 中子星物质压强都会随着$ \rho /{\rho }_{0} $的增加而增加, 低密度区域磁场对中子星物质压强的影响非常小; 而中高密度区域α值的增长使得中子星的压强明显变大. RMFT模型中GL91参数组对α = 0, 20, 40, 60四种情况下获得的中子星最大质量及其所对应的半径、最大半径及其所对应的质量, 以及这两种情况下中心密度的计算结果列于表1中. 从图1(b)及表1可以看到, 随着α的增加, 中子星最大质量明显增大(从α = 0时的2.111 M⊙增大到α = 60时的3.081 M⊙), 这是因为磁场的引入使中子星EOS变硬, 因此中子星所能对抗的最大引力也会增大; 最大半径也有明显增大(从α = 0时的14.014 km增大到α = 60时的15.765 km). 图1(b)还表明, 当质量取一定值时α越大的星体其所对应半径也越大, 这表明磁场的引入使中子星变得不那么致密. 此外, 在图1(b)中用阴影区域表示四颗目前已知大质量PSRs J1614-2230, J0348+0432, J0740+6620, J2215-5135以及引力波信号GW190814所包含的致密星的质量测量值, 用橙色误差棒表示PSR J0030+0451的质量、半径测量值范围. 从图1(b)可以看出, 强磁场环境下中子星的最大质量满足大质量脉冲星及GW190814的质量约束且在较低磁场情况下与PSR J0030+0451的观测值符合良好. 如果未来GW190814中的天体被确认为中子星, 那么其磁场相对较强, 按图1(b)的数值结果来讲, 其中心磁场强度约为8.828×1018 G, 表面磁场强度约为8.828×1014 G. 图 1 不同磁场强度下(α = 0, 20, 40, 60)中子星物质的(a)压强-核子密度、(b)质量-半径关系. 本文中, 黑红绿蓝四条线表示α = 0, 20, 40, 60四种情况; 不同颜色条纹区域分别表示PSRs J1614-2230, J0348+0432, J0740+6620, J2215-5135以及GW190814中致密星的质量测量值范围; 橙色误差棒表示NICER公布的PSR J0030+0415的质量-半径测量值对中子星质量-半径关系的约束. 各曲线上黑色圆点表示中子星最大质量所处位置, 三角形点表示最大半径所处位置 Figure1. Relationship of (a) the pressure - density and (b) the mass - radius in neutron star (NS) matter. In the paper the black, red, green, and blue lines represent the four cases of α = 0, 20, 40 and 60, respectively. The different colored areas stand for the recent constraints inferred from PSRs J1614-2230, J0348+0432, J0740+6620, J2215-5135 and GW190814 respectively. The orange error bar represents the constraints on the mass-radius limits of PSR J0030+0451 obtained from NICER observations. The dots and the triangle points show the maximum masses and radii of NSs for the four cases, respectively.
α
中子星最大质量处
中子星最大半径处
M /M⊙
R /km
ρc/ρ0
M /M⊙
R/km
ρc/ρ0
0
2.111
11.648
7.013
0.971
14.014
2.102
20
2.574
12.496
3.977
1.520
14.306
2.227
40
2.877
13.601
2.960
2.066
15.060
2.031
60
3.081
14.375
2.478
2.415
15.765
1.734
表1不同磁场强度下(α = 0, 20, 40, 60), 中子星最大质量及其对应半径和中心密度, 最大半径及其对应质量和中心密度 Table1.Table 1. Values of the maximum NS masses Mmax and the corresponding radii R as well as the center densities ρc/ρ0, values of the maximum NS radii Rmax and the corresponding masses M as well as the center densities ρc/ρ0 with α = 0, 20, 40, 60 in npeμ matter.
图2给出了强磁场影响下中子星物质声速随密度的变化曲线, 可以看到, 当α = 0, 20, 40时无论中子星的中心密度多高, 声速与光速的比值均小于1. 但是当磁场继续增高, 如 α 取60时, 声速在中心密度为5.12ρ0时等于光速, 而表1中给出此时最大质量中子星对应的中心密度ρc = 2.48ρ0 < 5.12ρ0. 因此本文中α = 0, 20, 40, 60时均满足因果律约束. 图 2 不同磁场强度下(α = 0, 20, 40, 60), 中子星内声速-核子密度关系 Figure2. Relationships of the speed of sound and the nucleon density with α = 0, 20, 40, 60 in NS matter.
图3给出了强磁场作用下中子星转动惯量随质量变化的情况. 可以看出, 四种情况下质量最大的中子星对应的转动惯量也最大, 即Mmax从2.111 M⊙增加到3.081 M⊙, 相应的转动惯量从138.253 M⊙ km2增加到334.921 M⊙ km2, 结合图1的讨论结果, 说明越硬的中子星EOS所对应的星体转动惯量越大. 因此, 在相同质量条件下, 拥有强磁场的中子星转动惯量更大. 此外, 在图3中标注出了四颗大质量PSRs J1614-2230, J0348+0432, J0740+6620, J2215-5135以及GW190814中致密星的质量区间, 从而在GL91参数组条件下得到了这五颗星转动惯量理论值的范围, 在表2中列出了具体数值. 从图3和表2可以看出, 随着磁场的增加这五颗星的转动惯量范围变宽. 图 3 不同磁场强度下(α = 0, 20, 40, 60), 中子星转动惯量-质量关系 Figure3. Relationships of the moment of inertia and the mass with α = 0, 20, 40, 60 in NS matter.
Source
α
R/km
I/M⊙·km2
Z
PSR J1614-2230
0
[13.067, 13.158]
[131.615, 133.926]
[0.317, 0.329]
20
[14.179, 14.220]
[148.276, 152.485]
[0.283, 0.291]
40
[15.037, 15.048]
[161.795, 166.371]
[0.261, 0.269]
60
[15.450, 15.670]
[172.197, 175.693]
[0.244, 0.253]
PSR J0348-0432
0
[12.548, 12.954]
[135.781, 138.653]
[0.348, 0.388]
20
[14.108, 14.179]
[155.490, 164.997]
[0.305, 0.323]
40
[15.048, 15.068]
[171.237, 182.428]
[0.277, 0.291]
60
[15.690, 15.722]
[182.428, 195.897]
[0.260, 0.276]
PSR J0740+6620
0
[11.648, 12.965]
[119.641, 138.653]
[0.344, 0.462]
20
[13.782, 14.170]
[155.490, 194.213]
[0.300, 0.416]
40
[14.976, 15.060]
[171.237, 220.062]
[0.273, 0.361]
60
[15.670, 15.783]
[182.428, 238.087]
[0.259, 0.334]
PSR J2215-5135
0
—
—
—
20
[13.679, 13.986]
[180.150, 198.670]
[0.362, 0.429]
40
[14.987, 15.037]
[199.859, 226.797]
[0.325, 0.371]
60
[15.742, 15.783]
[215.606, 244.822]
[0.300, 0.343]
GW190814
0
—
—
—
20
[12.496, 13.291]
[203.820, 206.593]
[0.496, 0.591]
40
[14.670, 14.905]
[242.544, 264.431]
[0.407, 0.470]
60
[15.670, 15.752]
[262.153, 288.002]
[0.370, 0.418]
表2不同磁场强度下(α = 0, 20, 40, 60), PSRs J1614-2230, J0348+0432, J0740+6620, J2215-5135以及GW190814中致密星的半径、转动惯量、引力红移理论值范围 Table2.Ranges of the theoretical values for the radius, the moment of inertia and the gravitational redshift corresponding to PSRS J1614-2230, J0348+0432, J0740+6620, J2215-5135 and the compact star in GW190814 with α = 0, 20, 40, 60.