1.School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China 2.Key Laboratory of Optoelectronic Information Science and Technology (Ministry of Education), Tianjin University, Tianjin 300072, China 3.Tianjin Jinhang Institute of Technical Physics, Tianjin 300308, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant No. 2017YFF0104603), the National Natural Science Foundation of China (Grant Nos. 61975146, 62075159), and the Key Research and Development Program of Shandong Province, China (Grant No. 2019JZZY020206)
Received Date:14 March 2021
Accepted Date:16 May 2021
Available Online:15 August 2021
Published Online:05 November 2021
Abstract:Fiber laser system in master oscillator power amplifier (MOPA) scheme is a promising technique for high-power narrow-linewidth laser output. With modulation-generated pulsed seed laser, the fiber MOPA benefits the flexible temporal behavior. However, the spectral linewidth broadening induced by self-phase modulation (SPM) is the main obstacle to achieving high-power single-frequency laser output with narrow spectral linewidth, especially for pulsed fiber MOPA in which the kilowatts level peak power results in strong nonlinearity. The SPM induced linewidth broadening is related to the derivative of light intensity with respect to time (dI/dt). Theoretically, if the dI/dt of the laser pulse is a constant, the SPM process will not generate any new frequency components. Hence, the linewidth broadening can be suppressed. In this work, we demonstrate a high-power single-frequency Yb fiber amplifier at 1064 nm, in which a sawtooth laser pulse is employed to suppress the SPM induced linewidth broadening, for obtaining the output with near-transform-limited narrow linewidth. The sawtooth-shaped seed pulse train is generated through using an electro-optic intensity modulator to modulate the continuous-wave (CW) output of a single-frequency fiber laser. After being pre-amplified, the seed laser with a pulse repetition rate of 20 kHz is coupled into the main amplifier, in which a piece of 0.9-m-long Yb-doped silica fiber with core and clad diameters of 35 μm and 250 μm, respectively, is used as a gain medium. The seed laser is enhanced to an average power value of 3.13 W under a launched 976-nm pump power value of 11.3 W before the onset of stimulate Brillouin scattering. The pulse energy 157 μJ and the pulse width 6.5 ns give a peak power of 24 kW. The spectral linewidth measured using a scanning Fabry-Perot interferometer at the maximum power is only 83 MHz, which is quite close to the 76-MHz transform-limited linewidth of the 6.5-ns sawtooth-shaped pulse. For comparison, we also conduct an experiment with a common Gaussian-shaped seed laser, in which the spectral linewidth is broadened significantly with a peak power value of only 1.5 kW. The results here reveal that the using of the sawtooth-shaped pulse is a promising technique to suppress the SPM induced spectral linewidth broadening in high-peak-power fiber amplifiers and acquire near-transform-limited narrow-linewidth laser output. Keywords:single-frequency fiber laser/ pulsed fiber laser/ self-phase modulation/ narrow-linewidth laser
全文HTML
--> --> -->
3.实验结果和讨论首先测量脉冲重复频率20 kHz时光纤MOPA的功率特性, 结果如图2, 所用功率计探头和表头分别为Ophir 12A和Ophir VEGA. 进入主放大器的种子光平均功率为220 mW, 在放大器有源光纤长度为0.9 m时得到了最佳实验结果, 11.3 W泵浦功率下激光平均输出功率为3.13 W, 斜效率为35.5%, 考虑20 kHz的脉冲重复频率, 对应单脉冲能量为157 μJ. 进一步增加泵浦功率则会在主放大器信号泵浦合束器的空闲端口观察到明显的SBS斯托克斯光成分. 有源光纤长度为1 m时, 得益于较高的泵浦吸收, 斜效率达到38.8%, 但泵浦功率为9.8 W、平均输出功率为2.83 W时即观察到了SBS斯托克斯光激射; 而使用0.8 m长的有源光纤时, 受泵浦吸收所限, 12.8 W泵浦功率下的激光平均输出功率为3.06 W, 转换效率与有源光纤长0.9 m时相比偏低, 且高泵浦功率下激光器的输出功率曲线出现明显的饱和现象; 因此后续实验中均采用0.9 m长的有源光纤. 需要说明的是, 上述由平均功率换算得到的单脉冲能量与将激光功率衰减后用自动扣除连续波成分的能量计探头Ophir PE10-C测得的单脉冲能量相符, 证明放大器的输出中不存在明显的连续波ASE. 图3给出用光谱仪Yokogawa 6370D (分辨率0.02 nm)记录的最高输出功率为3.13 W时的激光光谱, 得益于带通滤波器的使用, 实验中没有观察到明显的ASE现象, 仅在BPF的通光波段内有部分ASE成分, 激光输出与ASE成分之间的信噪比为45 dB. 利用刀口法测得此时的激光光束质量因子$ M^2 = 1.2 $. 图 2 不同有源光纤长度时光纤激光MOPA的平均输出功率曲线, 进入放大器种子光功率为220 mW, 重复频率为20 kHz Figure2. Average power of the fiber MOPA with different active fiber lengths as a function of launched pump power with 220 mW seed power at a PRF of 20 kHz.
图 3 平均输出功率为3.13 W、脉冲重复频率为20 kHz时的激光光谱 Figure3. Laser spectrum power recorded at the average output power of 3.13 W and the PRF of 20 kHz.
实验中使用高速光电探测器(Thorlabs DET01CFC)和示波器(Tektronix TDS3052C)记录激光脉冲时域波形, 图4(a)—(c)分别给出AOM调制后、经过2级包层泵浦预放大级后进入主放大器之前, 以及主放大器最高输出功率时的脉冲波形. 如图4(a), 调制产生的种子源为上升沿陡、下降沿缓的锯齿波脉冲, 限于信号发生器的带宽, 上升沿宽度为~1 ns, 脉冲的半高全宽则为7.5 ns; 种子光经历纤芯和包层预放大级时, 由于较低的种子光功率没有对有源光纤的增益造成明显的饱和, 因此从第二级包层预放大级输出、进入主放大器的脉冲波形相比AOM调制后的波形并未发生明显变化, 脉冲宽度仍为7.5 ns, 见图4(b); 经过主放大器放大后, 由于较强的脉冲前沿对有源光纤的增益饱和, 输出激光脉冲波形发生一定变化, 脉冲半高全宽缩短至6.5 ns, 但仍保持了锯齿波的波形, 如图4(c)所示. 此时对应前述3.13 W平均输出功率、20 kHz脉冲重复频率、157 μJ单脉冲能量的脉冲峰值功率为24 kW. 图 4 (a)调制产生的脉冲种子源的波形; (b)经过预放大进入主放大级之前的波形; (c)主放大器最高输出功率时的波形 Figure4. Oscilloscope traces of the (a) modulated seed pulse, (b) pulse after being pre-amplified, and (c) main amplifier output at the maximum power.
式中, I(t)为随时间变化的激光光强; P和Leff分别为激光脉冲峰值功率和有效光纤长度; γ为非线性参量, γ = n2(ω0)ω0/(cAeff), 其中, n2(ω0)为非线性折射率系数, ω0为激光角频率, c和Aeff分别为真空中的光速和光纤有效模场面积. 对于高斯型等常规脉冲波形, 其光强随时间的变化率$ {{\partial I(t)} / {\partial t}} $是时刻变化的, 这就导致时域上脉冲内不同时刻的激光频率相对其原有中心频率的偏移量不同, 即引起光谱展宽. 对于本实验中所用的锯齿波来说, 由于其下降沿光强随时间线性变化, 也即(1)式中$ {{\partial I(t)} / {\partial t}} $为常数, 因此忽略其很短的上升沿的作用后, 整个脉冲内所产生的非线性频移是一致的, 也就不会产生额外的频率分量, 能够抑制SPM引起的光谱展宽. 用法珀扫描干涉仪(FPI, Thorlabs SA200-8B, 分辨率7.5 MHz)测量激光峰值功率为24 kW时的激光光谱线宽, 结果如图5(a)所示, 此时光谱的半高全宽为83 MHz. 图中示波器记录的FPI波形是由诸多尖峰组成的包络, 这是由于几个ns的激光脉宽远小于ms级的FPI扫描周期, 每个激光脉冲引起的响应在波形上体现为一个尖峰, 而包络体现了激光的光谱线宽. 激光脉宽与光谱的时间带宽积极限和激光脉冲的时域波形有关, 对于常见的高斯、方波和锯齿波等时域波形来说, 其数值各不相同. 对时域锯齿波信号进行傅里叶变换, 可知其时间带宽积极限为0.491, 脉宽为6.5 ns的锯齿波对应变换极限光谱线宽为76 MHz, 24 kW峰值功率下测得的83 MHz的光谱线宽仅比其理论极限宽10%左右, 得益于锯齿波信号光强对时间的变化率为常数的性质, 实验中SPM效应导致的光谱展宽得到了显著的抑制. 而通过信号发生器控制EOIM使种子光脉冲为脉宽7.5 ns的高斯型脉冲时, 种子光经过第2级包层泵浦预放大级、峰值功率为1.5 kW时, 其光谱即发生了非常明显的展宽, 如图5(b). 进一步改变锯齿波信号的脉冲宽度, 使放大器输出脉冲宽度为5.9 ns和7.5 ns, 分别在峰值功率为24 kW和20 kW时测得了88 MHz和70 MHz的光谱线宽. 图6给出上述锯齿波形高功率光纤MOPA输出光谱线宽与其理论变换极限的对比, 可以看到其光谱线宽都接近理论变换极限, 充分验证了采用锯齿波形脉冲是抑制高功率光纤激光MOPA中SPM导致的光谱展宽、获得窄线宽单频激光输出的有效技术途径. 图 5 (a)使用锯齿波形时主放大器最高输出功率为24 kW时的激光线宽; (b)使用高斯波形时预放大级输出的激光线宽(脉宽7.5 ns, 峰值功率1.5 kW) Figure5. Measured spectral linewidths of (a) the sawtooth pulse at the maximum peak power of 24 kW and (b) the Gaussian-shaped pulse after being pre-amplified to a peak power of 1.5 kW with a pulse width of 7.5 ns.
图 6 锯齿波脉冲理论时间带宽积极限(实线)和实验中测得的不同脉宽锯齿波形光谱线宽(圆点) Figure6. Theoretical transform-limited spectral linewidth of the sawtooth pulses (line) and the measured spectral linewidths at different pulse widths (solid circle).