Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11504425, 11904406) and the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40335).
Received Date:24 May 2021
Accepted Date:22 June 2021
Available Online:15 August 2021
Published Online:05 November 2021
Abstract:The acoustic radiation force allows acoustic tweezers to suspend and move tiny particles. The horizontal movement is one of the common forms in which acoustic tweezers manipulate particles. In this paper, the direct relationship between acoustic radiation force and sound pressure is derived theoretically. The results show that there is a corresponding relationship between the maximum point of sound pressure (focus point) and the minimum point of acoustic radiation force potential energy. A model for focused acoustic field in acoustic tweezers is established based on the principle of phase modulating. In the numerical simulation, taking the double-sided 16-element acoustic tweezers device for example, the method of controlling the horizontal movement of particles and its stability are analyzed. Owing to the influence of gravity, the balance in the vertical direction must be considered in the horizontal movement of particles. Horizontal movement shows different stabilities at different positions in acoustic filed. The closer to the center of the array the particle is, the more stably it moves. The step length (accuracy) also has an important influence on the moving stability. In general, the shorter the step size is, the higher the stability is. In this model, when moving step length is reduced by one-half, the stability is improved by nearly 40%. The research results have theoretical significance for designing acoustic tweezers, planning particle movement paths, and promoting the application of acoustic tweezers technology. Keywords:acoustic tweezer/ particle manipulation/ phase modulation/ acoustic radiation force
当$r > \dfrac{\sqrt{3}}{k}$时, $\varGamma < 0$. 由于超声场中$\dfrac{\sqrt{3}}{k}~2\times {10}^{-3}\;\mathrm{m}$, 因而在实验中基本可以将$ \varGamma $视为负数. 所以声压$ p $的极(最)大值点即为声辐射力势能$ U $的极(最)小值点. 通常, 可利用聚焦声场获得局部声压的极大值. 图1给出了换能器与焦点之间的几何关系. 图 1 换能器与焦点之间的几何关系. 坐标原点位于下方阵列的中心处, x轴和y轴分别平行于方形阵列的两个边. 这里将换能器与聚焦点之间的距离视为换能器表面中心与聚焦点之间的距离, z轴垂直指向上方阵列. 图中, 某换能器中心到聚焦点在该阵元平面上的投影点之间的距离为$ d $, 上下阵列平面之间的距离为H, 换能器与聚焦点间的距离为$ r $, $ d $与$ r $之间所夹锐角记为$ \xi $ Figure1. Geometric relationship between the transducer and the focal point. Origin of the coordinate is located at the center of the lower array, and the x-axis and y-axis are parallel to the two sides of the square array. Here, the distance between the transducer and the focus point is regarded as the distance between the center of the transducer surface and the focusing point, and the z-axis points vertically to the upper array. In the figure, the distance between the center of a certain transducer and the projection point of the focal point on the array plane is $ d $, the distance between the upper and lower array planes is H, and the distance between the transducer and the focal point is $ r $. The acute angle in between $ d $ and $ r $ is recorded as $ \xi $
由于声压中含有时空周期变化的指数项, 所以可以运用相位调制的方法, 使声压聚焦于目标点. 假设上下两个阵列相距$ H $, 聚焦点到上方阵列的距离为$ {H}_{1} $, 到下方阵列的距离为$ {H}_{2} $, 坐标原点位于下方阵列的中心处, x轴和y轴分别平行于方形阵列的两个边, z轴垂直指向上方阵列. 聚焦点位于两个平面阵列中间的任意一个位置$ \left({x}_{0}, {y}_{0}, {H}_{2}\right) $处. 将聚焦点到任意1个阵元的距离$ r $视为聚焦点到该换能器表面中心点的距离, 聚焦点到平面上的投影与换能器表面中心之间的距离为$ d $, $ d $与$ r $之间所夹锐角记为$ \xi $. 将问题一般化, 上下平面总共有2N个阵元, 对应的$ r $值和$ \xi $值也有2N个. 下表面的某个阵元表面中心点的坐标为$ \left({x}_{1}, {y}_{1}\right) $, 那么其到聚焦点的投影点的距离$ \mathrm{为} $
记$ {\eta }_{n}={\varphi }_{n}-k{r}_{n} $, $ f\left(\eta \right)={\mathrm{e}}^{\mathrm{j}\eta } $为周期函数, 一个完整的周期内$ f $的最大值为1. 不妨认为此时$ \eta $为0, $ {A}_{n} > 0 $, 所以$ {p}_{t} $此时取得最大值, 迟滞相角$ {\varphi }_{n}=k{r}_{n} $, 这样就可以实现声压在目标点处的聚焦. 目标点处形成的声压极大值同时也是声辐射力势能的极小值, 微粒在仅受声辐射力作用的情况下将被束缚于目标点. 聚焦点的移动, 实质上就是声压在不同点处实现聚焦. 不同的点到达各换能器距离不一, 而距离又决定了相角的大小, 所以引入的迟滞相角也不一致. 这样当聚焦点的位置在两点之间变换时, 根据不同的点改变各换能器发射信号的相角即可. 平面移动是声镊的典型操作之一, 本文主要讨论粒子在平面上移动的情况. 微粒从某一位置移动至下一个位置的过程中系统发生的变化包括: 极小势能点的移动和微粒的受力移动. 该过程如图2(a)—(c)所示. 当形成声压聚焦点时, 微粒被束缚于该聚焦点处, 即势能极小值点处. 通过改变各换能器发射信号的相角, 从而在平面内改变聚焦点的位置, 即实现了势能极小值点的移动. 由于聚焦点的移动, 微粒暂时地移动到力的汇聚区的边缘, 在不脱离力的汇聚区范围的情况下, 微粒受到1个指向势能极小值点的力的作用, 在没有水平方向外力干扰的情况下, 微粒最终会运动至聚焦点处. 图 2 (a)?(c)微粒在平面内移动过程的俯视示意图, 其中(a)微粒被束缚在聚焦点处, 黑色箭头代表力的分布; (b)聚焦点移动后微粒与力的汇聚区相对位置示意图, 黑色箭头代表微粒所受力的方向; (c)微粒回到聚焦点; (d), (e)力的汇聚区移动的示意图. 上下两块正对的正方形区域为换能器阵列所在平面, 上嵌的圆圈代表换能器, 不同颜色代表不同的相位. 力的汇聚区以红色虚线圆圈表示, 黑色虚线簇代表声线, 黑色实线为辅助线, 用以标明力的汇聚区位置, 粉色虚线为力的汇聚区移动轨迹所在直线 Figure2. (a)?(c) Schematic top views of the movement of particles in a plane: (a) Particles are bounded at the focus point, and the black arrow represents the distribution of acoustic radiation force (ARF); (b) schematic diagram of the relative position of the particle and the convergent area of the force after the focus point moves, with a black arrow representing the direction of the force acting on the particle; (c) particle returning to the focus point. (d), (e) Schematic diagrams of the movement of the force convergence area. The upper and lower two square areas facing each other are the planes where the transducers are located. The circles embedded on the planes represent the transducers, and different colors represent different phases. The force convergence area is represented by a red dashed circle. The black clusters of dashed lines represent acoustic rays. The black solid line is an auxiliary line to indicate the location of the force convergence area, and the pink dashed line is the straight line where the trajectory lies.
以图2(d)和图2(e)中描述的过程来说明具体的移动方法. 当实现如图2(d)所示聚焦时, 换能器相位分布情况为: ${\varphi }_{\mathrm{红}}=k{r}_{\mathrm{红}}=13.593\;\mathrm{r}\mathrm{a}\mathrm{d}, {\varphi }_{\mathrm{黄}}=k{r}_{\mathrm{黄}}= $$ 17.092\;\mathrm{r}\mathrm{a}\mathrm{d}, {\varphi }_{\mathrm{绿}}=k{r}_{\mathrm{绿}}=19.988\;\mathrm{r}\mathrm{a}\mathrm{d};$当聚焦点需要变换至图2(e)所示位置时, 换能器相位相应地变化为: ${\varphi }_{\mathrm{红}}=k{r}_{\mathrm{红}}=13.593\; {\rm{rad}}, {\varphi }_{\mathrm{黄}}=k{r}_{\mathrm{黄}}=17.092\;\mathrm{r}\mathrm{a}\mathrm{d},$${\varphi }_{\mathrm{绿}}\;=\;k{r}_{\mathrm{绿}}\;=\;19.988\;\mathrm{r}\mathrm{a}\mathrm{d},\; {\varphi }_{\mathrm{蓝}}\;=\;k{r}_{\mathrm{蓝}}=22.514\;\mathrm{r}\mathrm{a}\mathrm{d}, \;$$ {\varphi }_{\mathrm{橙}}=k{r}_{\mathrm{橙}}=24.785\;\mathrm{r}\mathrm{a}\mathrm{d}. $ 将操控面选定为平面z = H/2, 如图2(e)所示. 驻波场中声辐射力沿轴向的分布如图3所示, 声辐射力和声压一样沿着图中的z轴周期变化, 正负代表其方向, 最大值介于两个最小值之间. 不考虑重力的影响时, 粒子悬浮于声辐射力为0的汇聚点处. 但由于微粒自身重力不可忽略, 对于悬浮会产生一定的影响. 若能够悬浮, 粒子位置将在力的汇聚零点之下, 相邻的力的最大值之上[21], 即图3中红色虚线之间的区域. 当声压为一简谐波时, 声辐射力的波长为声压波长的一半, 所以声辐射力极值和相邻的声辐射力零值相距${\lambda }/{8}$[22], 这里$ \lambda $指声压的波长. 本文中微粒稳定悬浮的高度位于${H}/{2}-{\lambda }/{8}$和${H}/{2}$之间. 除了垂直正对的换能器之间会产生驻波外, 其余换能器之间也会产生驻波点, 那么声辐射力的最大值和最小值可能不在理论位置. 因此, 微粒的移动并不能稳定在某一个确定的高度, 而是在z = H/2附近. 在第3节中会详细讨论该问题. 图 3 某对换能器在垂直方向产生的驻波声场中的相关元素示意图. 黑色虚线为声压的垂向分布, 黄色虚线为声辐射力的垂向分布, 蓝色箭头的长短和方向代表声辐射力的大小和方向. z轴上的H/2高度处应为力的汇聚点, 其下方1/8个波长处应为相邻的1个力的极大值对应的高度 Figure3. Schematic diagram of the relevant elements in the standing wave acoustic field generated by a pair of transducers in the vertical direction. The black dashed line is the vertical distribution of acoustic pressure, the yellow dashed line is the vertical distribution of the ARF. The length and direction of the blue arrow represent the magnitude and direction of the ARF. The height of H/2 on the z axis should be the convergence point of the force, and the one-eighth of the wavelength below it should be the height corresponding to the adjacent maximum force.