1.Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 2.Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China 3.Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China 4.School of Electrical Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China 5.Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 41805014), the Foundation of Advanced Laser Technology Laboratory of Anhui Province, China (Grant No. 20191002), the Key Program of the Youth Talent Support Plan in Universities of Anhui Province, China (Grant No. gxyqZD2020032), the Strategic Priority Research Program (A) of Chinese Academy of Sciences (Grant No. XDA17010104), and the Open Research Fund of Key Laboratory of Atmospheric Optics, Chinese Academy of Sciences (Grant No. JJ-19-01)
Received Date:15 January 2021
Accepted Date:22 March 2021
Available Online:07 June 2021
Published Online:20 August 2021
Abstract:Based on the gas multi-pass absorption cell with dual-optical paths (long optical path: 72.46 m; short optical path: 36.23 m), a measurement method of simultaneously detecting water vapor absorption spectra is advanced. Combining with a narrow line-width external cavity diode laser and a high-precision Fabry-Perot etalon, a high-resolution simultaneous measurement device with dual-optical paths for water vapor absorption spectra in 1 μm band is developed. Since the external cavity diode laser has excellent polarization characteristics which could be combined with a half-wave plate and a polarization beam splitter to implement the laser transmissions in dual-optical paths simultaneously. Both the multi-pass absorption cell and the Fabry-Perot etalon in the measurement device have pressure and temperature control units, which are utilized for achieving ambient stability. The free spectral range of Fabry-Perot etalon is accurately measured by the method of optical comb frequency. Corresponding free spectral range with a deviation of only 0.02 % from the theoretical value is obtained to be a value of 749.52 MHz, and the influence of temperature on the frequency shift of etalon is less than 1 % of the measured value. The stability of the pressure and the temperature in the dual-optical path gas multi-pass absorption cell in the system are evaluated in detail, and the calculated relative errors are not more than 0.03 % and 0.02 %, respectively. At a temperature of 300 K, the system is used to measure the absorption spectra of water vapor at 9152.53 cm–1 from 400 Pa to 2000 Pa on dual-optical paths, then the integrated absorbance and Lorentzian line-width of water vapor for long optical path and short optical path are inverted by fitting absorption spectra with Voigt profile respectively. The absorption line intensities and self-broadening coefficients are acquired by performing linear fitting to the integrated absorbance and Lorentzian line-width under different pressures. And the relative deviations of the average values of the dual-optical path absorption line intensities (converted to the reference temperature of 296 K) and the self-broadening coefficients and the corresponding data of the HITRAN2016 database are 0.78 % and 3.8 %, respectively. Consequently, the feasibility of the dual-optical path simultaneous measurement method and the reliability of the measurement device are demonstrated by the results. Keywords:dual-optical paths/ near infrared spectrum/ line intensities/ self-broadening coefficients
实验中所用双光程气体吸收池示意图如图2所示. 气体吸收池为Herriott型, 该结构简单可靠, 低压情况下形变小. 吸收池内两个镀银膜反射镜的直径为80 mm, 间距为450 mm. 在如图2所示的反射镜上共开有四个直径为4 mm的通光孔, 长、短光程的入射端和出射端各自对应, 长光程的等效光程为72.46 m, 短光程的等效光程为36.23 m. 当光束同时从长、短光程的入射光孔进入吸收池时, 则可实现双光程, 并且两个光程互不干扰(镜内光斑如图3所示). 此时, 在激光频率单次扫描的情况下, 可同时获得两张不同光程的吸收光谱, 在增加数据冗余的同时并未延长测量时间. 此外, 池壁外部包裹控温层, 使用温控器可保持吸收池温度的稳定性, 实验测得的整体温度波动小于 ± 0.05 K. 图 2 吸收池结构示意图 (a)吸收池的正面; (b)吸收池的背面 Figure2. Schematics of absorption cell structure: (a) Front of the absorption cell; (b) back of the absorption cell.
图 3 He-Ne激光器在反射镜上的长光程(外圈与中圈)和短光程(内圈)实际光斑 Figure3. The actual spots of long optical path (outer circle and middle circle) and short optical path (inner circle) of He-Ne laser on the mirror.
实验中通过系统漏率评估吸收池压力系统的稳定性, 首先利用真空泵将气路压力抽至低于1 Pa, 然后在恒温条件下(300 K), 使用CTR-100压力计持续监测吸收池内部压力, 连续记录了70 h的压力值, 结果如图4所示. 结合实际的吸收池容积(2.6 L), 计算得出的系统泄漏率为4.54 × 10–4 Pa·L·s–1. 所以在1 h内的压力变化为0.62 Pa, 影响可以忽略不计. 图 4 70 h内的多通吸收池中压力变化图 Figure4. Pressure change in the multi-pass absorption cell in 70 h.
${f_{\rm{b}}} = m \cdot {f_{\rm{r}}} \pm \delta \pm {f_m},$
式中m为整数, fr和$\delta $分别是光频梳的脉冲重复频率和载波包络相位偏移, fm为激光锁定在标准具上的频率, fb为标准具信号与光梳信号的拍频. 因此, 可以根据拍频信号fb的变化评估F-P标准具FSR的稳定性, 结果如图5所示. 激光器的相对频率漂移约为5.39 MHz·h–1. 即1 h内由于标准具FSR波动造成波数测量的相对偏差约为0.72%, 可以认为标准具的稳定性良好. 图 5 1.5 h内激光器与光梳拍频信号(fb)的频率变化 Figure5. Frequency variation of the beat signal (fb) between the laser and the optical comb within 1.5 h.
-->
3.1.水分子的双光程吸收光谱特征
通常单次扫描只能获得一张光谱, 为保证实验数据的冗余需对相同实验条件下的气体进行重复测量, 获得多张光谱, 然而在重复测量期间样品气体的温度、压力以及激光器的扫描特性等条件的变化容易引起实验误差. 相反, 双光程同步测量单次扫描可以获得除光程外其他实验条件完全相同的两张光谱, 这既保证了数据的冗余, 又可避免重复扫描过程中由于实验条件的变化而引起的误差. 基于双光程吸收光谱测量系统, 实验采集了394.9, 585.3, 804.2, 980.1, 1501.9和1990.7 Pa共6组压力下9152.53 cm–1处水分子跃迁谱线的吸收光谱. 图6(a)和图6(b)分别为单次扫描同步测量获得的水分子的短光程吸收光谱和长光程吸收光谱, 图6(c)为同时测量得到的F-P标准具纵模信号, 图6右侧为左侧图中半个周期内的放大图. 实验中利用图6(c)的信号定标水分子吸收光谱的相对波数, 通过寻找基模信号的横坐标(实验点数), 并构建实验点数和FSR关系(基模信号的间隔即为FSR, 其数值为0.024984 cm–1), 再进行多项式拟合即可得到以波数为横坐标的吸收光谱. 绝对波数采用HITRAN2016数据库的相应数据. 图 6 同时记录的光谱示例 (a)短光程水分子吸收信号; (b)长光程水分子吸收信号; (c)F-P标准具纵模信号 Figure6. Examples of spectra recorded simultaneously: (a) Short optical path water vapor absorption signal; (b) long optical path water vapor absorption signal; (c) the longitudinal mode signal of F-P etalon.
为获取水分子吸收谱线的线强和自加宽系数, 首先需要得到不同压力下的吸收系数, 可采用Voigt线型对去基线后的光谱进行拟合获得, 吸收光谱的基线可通过对远离吸收线中心位置的数据点执行三次多项式拟合的方法取得. 图7给出了长光程和短光程下, 温度为300 K时, 6组压力下9152.53 cm–1处水分子的吸收谱线采用Voigt线型的拟合结果及其残差值. 需要注意的是, 采用Voigt线型对高分辨率、高频率精度的吸收光谱进行拟合时, 拟合残差会呈“W”形. 拟合过程中, 吸收谱线的多普勒线宽固定为温度为300 K时的理论值. 图 7 (a), (b)在长光程中9152.53 cm–1处纯水分子的吸收系数和拟合残差; (c), (d)在短光程中纯水分子在相同光谱线位置的吸收系数和拟合残差 Figure7. (a), (b) Absorption coefficient and fitting residual of water vapor at 9152.53 cm–1 in long optical path; (c), (d) absorption coefficients and fitting residuals of pure water vapor at the same spectral line position in a short optical path.
式中KT为不同温度间线强的转换系数, Q为体系的总配分函数, h为普朗克常数, ${\nu _{nm}}$为跃迁频率, $E'' $为下势能面, 具体数值均可在HITRAN2016数据库中查询. 构建粒子数浓度和单位距离上相应的积分吸光度(吸收系数对波数的积分, 单位为cm–2)的线性关系, 结果如图8所示, 拟合得出的斜率即为线强. 图中红色实线对应长光程下线强拟合结果; 蓝色虚线对应短光程下线强拟合结果; 误差棒则代表了单位距离上积分吸光度的不确定度. 图 8 温度300 K时, 水分子在9152.53 cm–1处单位距离上的积分吸光度与粒子数浓度的线性拟合结果及其拟合残差(左上角小图显示了3.626 × 1017 molecule·cm–3下5组单位距离上积分吸光度平均后的标准差. 因标准差过小, 主图上未完全显示) Figure8. At a temperature of 300 K, the linear fitting results and fitting residual errors of the integrated absorbance per unit distance of water vapor at 9152.53 cm–1 against the particle number concentration. (The minor image in the upper left corner shows the average standard deviation of the integrated absorbance of the 5 groups of unit distances under 3.626 × 1017 molecule·cm–3. However, the standard deviation is so small that it is not fully displayed on the main image)
其中Pself和Pout分别为吸收气体分压和外部加宽气体分压, ${\gamma _{{\rm{self}}}}$为自加宽系数, ${\gamma _{{\rm{out}}}}$为外加宽系数, Patm为标准大气压, T0为标准温度296 K, n为加宽系数的温度依赖系数, 实验采用HITRAN2016数据库给定的n值. 由于实验采用纯水分子作为吸收气体而无外加宽气体, 认为(10)式中的洛伦兹线宽不受外加宽系数影响. 基于6组压力下的吸收系数, 通过对长、短光程中不同压力下的洛伦兹线宽作线性拟合, 可以分别获得水分子在9152.53 cm–1处各自光程下的自加宽系数, 结果如图9所示. 图 9 300 K时, 9152.53 cm–1处水分子洛伦兹线宽与压力的线性拟合结果 Figure9. At a temperature of 300 K, the linear fitting result of the Lorentzian line width against pressure of water vapor at 9152.53 cm–1.