1.CAS Key Laboratory of Geospace Environment, Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 2.CAS Center for Excellence in Ultra-intense Laser Science(CEULS), Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Fund Project:Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), the National Natural Science Foundation of China (Grant Nos. 11775223, 11375197, 11605200, 11275202), the Fundamental Research Fund for the Central Universities, China and the Open Fund of the State Key Laboratory of High Field Laser Physics (SIOM), China
Received Date:08 March 2021
Accepted Date:08 April 2021
Available Online:07 June 2021
Published Online:20 August 2021
Abstract:Magnetized laser plasma has attracted a lot of attention in recent years especially in magnetized inertial confinement fusion, laboratory astrophysics, and industrial application. Pulsed intense magnetic field device is the core equipment of magnetized laser plasma experiment. Here in this work, an inductively coupled coil is developed to optimize the pulsed intense magnetic field device. The primary coil of a multi-turn solenoid is used instead of a single-turn coil. Then the energy of the solenoid is delivered to the secondary coil via inductively coupled transformer, which increases the current density markedly. The current generates a stronger magnetic field in the single-turn magnetic field coil. The influence of the diameter and the number of turns of the primary solenoid of the inductively coupled coil on the magnetic field are explored in experiment and simulation. It is found that for a discharge system of 2.4 μF capacitance, the optimized parameters of the primary solenoid are 35 turns and 35 mm diameter. The optimized magnetic field is 3.6 times stronger than that of the conventional directly connected single-turn coil. At a charging voltage of 20 kV, the peak magnetic field reaches 19 T in a magnetic field coil of 5 mm inner diameter. The inductively coupled coil made of CuBe solves the problem of coil expansion in intense magnetic field, and a peak magnetic field of 33 T is obtained at a charging voltage of 35 kV. The present approach creates stronger magnetic field environments. At the same time, the inductively coupled coil reduces the requirements for system inductance, so that components such as energy storage capacitors and switch can be placed far from the coil, which improves the flexibility of the experiment setup. Keywords:laser plasma/ magnetized plasma/ pulsed intense magnetic field device/ inductively coupled coil
全文HTML
--> --> -->
2.电感耦合线圈的原理和设计使用电感耦合线圈的脉冲强磁场设备的电路结构如图1所示, 左边初级回路由放电系统和变压器的初级螺线管组成, 右边次级回路由变压器的次级线圈和磁场线圈组成, 两个回路通过变压器初级螺线管和次级线圈的电磁感应耦合在一起. 图 1 脉冲强磁场设备的电路图. 橘色框内是初级回路, 蓝色框内是次级回路. $ {L}_{\mathrm{M}} $和$ {R}_{\mathrm{M}} $分别为初级回路除螺线管之外的电感和电阻; $ {L}_{\mathrm{P}} $和$ {R}_{\mathrm{P}} $分别为变压器初级螺线管的电感和电阻; $ {L}_{\mathrm{S}} $和$ {R}_{\mathrm{S}} $分别为变压器次级线圈的电感和电阻; $ {L}_{\mathrm{C}} $和$ {R}_{\mathrm{C}} $分别为次级回路中除变压器次级线圈以外的电感和电阻; $ C $是电容器的电容 Figure1. Circuit diagram of a pulsed intense magnetic field device. The left orange box is the primary circuit, and the right blue box is the secondary circuit. $ {L}_{\mathrm{M}} $ and $ {R}_{\mathrm{M}} $ are the inductance and resistance of the primary circuit except the solenoid; $ {L}_{\mathrm{P}} $ and $ {R}_{\mathrm{P}} $ are the inductance and resistance of the transformer primary solenoid; $ {L}_{\mathrm{S}} $ and $ {R}_{\mathrm{S}} $ are the inductance and resistance of the transformer secondary coil; $ {L}_{\mathrm{C}} $ and $ {R}_{\mathrm{C}} $ are the inductance and resistance of the secondary circuit except the secondary coil of the transformer; C is the capacitance of the capacitor.
设计制作了不同匝数(10—45匝)和直径(25—45 mm)的初级螺线管, 并加工了相匹配的黄铜变压器外壳. 使用放置于初级回路中的罗氏线圈(Pearson Electronics 4418)测量放电电流, 并使用经过校准的磁探针放置于磁场线圈中心来测量磁场波形. 各种尺寸的电感耦合线圈产生的峰值磁场强度如图3所示. 可以看到, 线圈的磁场强度一开始随着初级螺线管匝数和直径的增大而增大, 在35匝、35 mm直径时磁场达到峰值. 当初级线圈的匝数较少时, 初级螺线管的电感较小, 线圈电感在放电系统的总电感占比较低, 导致较少能量转换为磁能, 磁场较小; 初级线圈直径较小时, 除了螺线管的电感占比较小外, 与直径成正比的变压器次级线圈与螺线管的耦合效率$ k $降低, 产生的磁场强度也较小. 匝数过多或直径过大, 例如直径为35 mm匝数超过35匝或匝数为35匝直径到达45 mm时, 磁场强度又开始减弱, 从图4所示的螺线管的电感和电阻、磁场脉冲上升沿的变化曲线可以发现, 此时螺线管电感过大、放电脉冲太长, 同时电阻也较大, 导致初级回路峰值电流降低, 产生磁场强度变小. 图 3 磁场线圈中心的峰值磁场强度随初级螺线管的匝数和直径变化 Figure3. The peak magnetic field at the center of magnetic field coil varies with the number of turns and diameter of the primary solenoid.
图 4 初级螺线管直径35 mm时, 螺线管部分的电感、电阻和磁场脉冲上升沿随线圈匝数的变化 Figure4. Inductance and resistance of the primary solenoid, and the rising time of the magnetic field pulse at different solenoids’ numbers of turns. The diameter of the primary solenoid keeps at 35 mm.
表1最高磁场强度时脉冲强磁场设备的电感和电阻分布 Table1.The distribution of inductance and resistance of pulsed magnetic field device.
图 5 使用35匝、直径35 mm初级螺线管的电感耦合线圈在20 kV时的放电测试结果和模拟结果 (a)初级回路电流波形; (b)磁场线圈的磁场波形; (c)磁场峰值时磁场强度的二维轴对称分布; (d)线圈轴向上的峰值磁场分布 Figure5. Experimental and simulation results of the pulsed magnetic field at 20 kV discharge voltage using an inductively coupled coil with primary solenoid of 35-turns and 35-mm diameter: (a) Current pulse of the primary solenoid; (b) magnetic field pulse at the center of the magnetic field coil; (c) two dimensional axisymmetric distribution of the peak magnetic field; (d) the peak magnetic field distribution along the axis of the magnetic field coil.
为了测试电感耦合线圈的极限性能, 测量了黄铜材料的电感耦合线圈产生的峰值磁场强度随放电电压的变化关系, 并将实验结果与COMSOL Multiphysics模拟的结果进行了对比, 如图6所示. 模拟和实验发现, 线圈能提供的磁场强度与放电电压呈线性变化关系, 在脉冲强磁场设备的放电电压小于30 kV时, 实验测量的结果与模拟结果的一致性较好. 但当放电电压为35 kV时, 实验测得的峰值磁场强度开始小于模拟值. 这是因为当充电电压超过30 kV以后, 在磁场线圈内产生的磁场强度超过25 T, 此时的磁压力$ P=250\;\mathrm{M}\mathrm{P}\mathrm{a} $超过了黄铜的屈服强度200 MPa, 磁场线圈扩张使得磁场变弱. 因此在放电电压为35 kV时, 实验获得的峰值磁场强度小于模拟结果, 更高放电电压时甚至出现了磁场线圈炸裂问题. 图 6 磁场线圈产生的峰值磁场强度随放电电压的变化. 虚线为模拟结果, 点为实验结果. 电感耦合线圈材料分别是Cu, CuBe和马氏体时效钢, 屈服强度分别为[25]: 黄铜200 Mpa, 铍铜1 GPa, 马氏体时效钢2 GPa Figure6. The peak magnetic field produced by magnetic field coil varies with the discharge voltage. The dotted line is the simulation result, and the dot is the experimental result. These inductively coupled coils are made of Cu, CuBe or Maraging steel with yield strength of: Cu ~200 MPa, CuBe ~1 GPa, Maraging steele ~2 GPa.