Key Laboratory of Optoelectronic Information Science and Technology, Ministry of Education, College of Precision Instrument & Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 62075159)
Received Date:13 January 2021
Accepted Date:08 April 2021
Available Online:07 June 2021
Published Online:20 August 2021
Abstract:Terahertz (THz) wave is an electromagnetic wave with frequency in a range of 0.1–10 THz, which possesses excellent photonic and electronic properties. THz wave has higher penetration and lower photon energy to non-polar materials, which makes it possess great academic value in medical, non-destructive testing and other related fields. In addition, the features such as wide bandwidth and large communication capacity of THz wave allow it to be widely used in communication, radar detection and other applications. Despite its rapid development in recent years, THz technology is used still mainly in free space currently and it is difficult to control the transmission direction of THz wave over a long distance in free space. What is more, the transmission of THz waves in free space is affected usually by the dust and water vapor. For achieving the efficient transmission of THz waves, researchers have proposed a variety of THz waveguides, including plastic fiber, Bragg fiber, photonic crystal fiber and anti-resonant fiber (ARF). The ARF confines the incident beam within the air hole of fiber center by the anti-resonance effect, which has aroused great interest because of its simple structure, low transmission loss, high damage threshold, low dispersion, and high transmission bandwidth. At present, adjustable THz fiber devices based on ARF are still reported rarely. In the near-infrared band, researchers have combined ARF with vanadium dioxide (VO2) to realize the exceptional modulation effects. The VO2 is a metal oxide with insulator-metal phase transition when the ambient temperature is near 68 ℃, in which its electrical conductivity, dielectric constant and other properties will change drastically. In this paper, the VO2 is coated on the inner wall of the THz ARF cladding tubes, and the effect of the phase transition of VO2 on the propagation characteristics of the ARF is studied. Simulation results indicate that in the THz band, the phase transition of VO2 will cause the anti-resonance period of the ARF to change greatly, in which the confinement effect of the ARF cladding tubes on the incident beam is converted from anti-resonant state to resonant state. Without changing the structure of the ARF, the effective modulation on the THz wave in the core of the ARF can be achieved only by controlling the phase transition of VO2, which has a wide application prospect in the field of THz adjustable devices. In this paper, a THz optical switch and a polarization controller based on VO2-coated ARF are proposed. With the optical switch being on and off, the corresponding losses are 0.5 dB/m and 110 dB/m respectively at 120 μm. If phase transition of VO2 is induced by the excitation laser, it is expected to realize a fast-optical switch. Regarding the polarization controller, the polarization state and polarization direction of the THz wave in the core of the ARF can be controlled, and the birefringence coefficient of the ARF in the polarization state is more than 1.4 × 10–4. Keywords:vanadium dioxide/ terahertz/ anti-resonant fiber/ fiber devices
利用上述VO2-ARF结构, 研究VO2相变对VO2-ARF传输特性的影响. 图2(a)是VO2电导率不同时, VO2-ARF的损耗随包层管壁厚度t的变化曲线. 可以看出, 当VO2电导率由100 S/m变为3 × 105 S/m, 即VO2发生相变时, VO2-ARF的反谐振周期发生分裂, 此时包层管对入射光束的作用效果由反谐振状态变为谐振状态, 光纤的损耗发生突变. 例如, 在t = 78 μm处光纤的损耗由0.5 dB/m增加至100 dB/m以上, 在不改变光纤结构的条件下, 仅控制VO2发生相变, 便可以实现对VO2-ARF损耗的控制. 为了研究这种变化出现的原因, 对比了t = 78 μm时, 不同电导率下光纤的电磁损耗情况, 图2(b)为光纤电磁损耗分布图, 可见, 光纤的电磁损耗主要集中在包层管壁处, 当VO2电导率由100 S/m变为3 × 105 S/m时,包层管壁处的电磁损耗会有3个数量级以上的增加, 由此可知金属相的VO2会产生很高的电磁损耗. 图 2 (a) VO2电导率σ不同时, 光纤的损耗随包层管壁厚t的变化; (b) VO2-ARF电磁损耗分布 Figure2. (a) Confinement loss (CL) of VO2-ARF as a function of cladding tube wall thickness (t) under different conductivity of VO2 (σ); (b) electromagnetic loss distribution of VO2-ARF.
进一步研究VO2的电导率与厚度对VO2-ARF反谐振周期的影响. VO2厚度t0 = 1 μm时, 光纤的损耗随VO2-ARF包层管壁厚度以及VO2电导率的变化如图3(a)所示. 可以看出, 随着电导率的增加, 在t = 60 μm附近反谐振周期中开始出现额外的高损耗点, 并且该高损耗点随着电导率的增加而右移, 损耗也随之增加, 在这一过程中, 包层管对光束的作用效果由反谐振状态变为谐振状态. 在VO2电导率增加的过程中, VO2会由最初的绝缘相向金属相过渡, 当电导率大于6 × 104 S/m后, VO2由金属相占主导, 随着电导率的继续增加, 高损耗点不再发生变化. 图 3 (a) VO2-ARF的损耗随包层管壁厚t以及VO2电导率σ的变化; (b) VO2-ARF损耗随包层管壁厚t以及VO2厚度t0的变化 Figure3. Confinement loss (CL) of VO2-ARF as a function of cladding tube wall thickness (t) and the conductivity of VO2 (σ); (b) confinement loss (CL) of VO2-ARF as a function of cladding tube wall thickness (t) and the thickness of VO2 (t0).
根据VO2相变调控VO2-ARF反谐振周期的原理, 本文提出了基于VO2-ARF的THz光开关. 光开关的三维结构如图4(a)所示, 外包层壁厚T = 0.5 mm, 6个包层管均匀分布在外包层内壁, 包层管内径d = 1.3 mm, 壁厚t = 0.078 mm, 包层管内壁涂敷有VO2, 如图4(a)中蓝色部分所示, VO2厚度t0 = 1 μm, 考虑到光纤的尺寸及损耗, 控制纤芯直径Dcore = 2 mm, 光开关长度为10 cm. 利用光调控的方法, 可实现对VO2相变的高速调控, Liu等[12]利用800 nm的脉冲激光对VO2进行光激励, 使其发生快速相变, 研究VO2的光学特性, 这一过程中800 nm脉冲激光会使VO2发生带间跃迁, 改变其光学特性. 根据上述研究, 本文采用波长为800 nm的脉冲激光器作为激励光源, 脉冲宽度为纳秒级, 激光能量密度不小于100 μJ/cm2, 控制6个包层管处激励光源分别入射至各包层管内, 使激励光源能够均匀辐照位于包层管内部的VO2, 控制其相变情况. 激励光源的通断对光纤损耗的影响如图4(b)所示, 激励光源关闭时, VO2为绝缘相, 此时光纤的损耗随波长的变化如图4(b)中黑色曲线所示, 光纤内电场分布如图4(c)所示, 可见THz波被有效限制在纤芯中进行传输. 激励光源打开, 诱导VO2发生相变后, ARF的损耗在入射光波长接近120 μm时发生剧烈变化, 此时光纤中的电场分布如图4(d)所示, 可见此时入射光与包层管壁发生强烈耦合, 致使光纤损耗急剧增加. 对波长约为120 μm的入射光, 激励光源打开与关闭状态下的损耗分别为0.5 dB/m和110 dB/m, 可见, 该光开关可实现对2.5 THz波有效的“开”与“关”的效果. 图 4 (a) 光开关结构示意图; (b) 光开关处于“开”、“关”状态时, 光纤损耗随波长λ的变化曲线; (c) 光开关为开状态和(d)关状态时的电场分布图 Figure4. (a) Cross-section diagram of optical switch; (b) when the optical switch is on and off, confinement loss (CL) of ARF as a function of incident light wavelength (λ); electric field distribution diagram when optical switch is (c) on and (d) off.
23.2.偏振调控器 -->
3.2.偏振调控器
基于VO2-ARF的研究, 本文提出了如图5(a)所示的偏振调控器, 外包层壁厚T = 0.5 mm, 4个包层管均匀分布在外包层内壁, 分别命名为1, 2, 3, 4, 包层管内径d = 2 mm, 壁厚t = 0.078 mm, 包层管内壁涂敷有VO2, 如图5(a)中蓝色部分所示, VO2厚度t0 = 1 μm, 控制纤芯直径Dcore = 2 mm, 光纤入射光为2.5 THz波. 与光开关相同, 偏振调控器同样使用波长为800 nm脉冲激光诱导VO2发生相变, 从而达到调控效果. 分别控制光纤4个包层管内部激励光源的通断以控制不同包层管内VO2的相变情况, 使光纤的不同偏振方向处于不同的谐振状态, 因而光纤不同偏振方向的有效折射率及损耗会产生很大的差别, 入射的THz波会转变为偏振光, 且偏振方向可控. 图 5 (a) 偏振调控器结构示意图; (b) 光纤实现偏振光传输时, 光纤不同偏振方向的有效折射率随激励光源光通量的变化曲线; (c) 光纤实现偏振光传输时, 光纤不同偏振方向的损耗随激励光源光通量的变化曲线 Figure5. (a) Cross-section diagram of polarization controller; (b) effective refractive index (neff) and (c) confinement loss (CL) of ARF in orthogonal polarization directions as a function of excitation fluences of the excitation laser when ARF realizes the polarized transmission.