1.School of Big Data Engineering, Kaili University, Kaili 556011, China 2.College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61975023, 61875211, 51602033, 61520106012), the Doctoral Project of Kaili University, China (Grant Nos. BS202004, BS201301), the Academic New Seedling Cultivation and Innovation Exploration Special Project of Kaili University, China (Grant No. Qian Ke He Ping Tai Ren Cai [2019]01-4), and the Major Research Projects of Innovative Groups in Education Department of Guizhou Province of China (Grant No. Qian Jiao He KY[2018]035)
Received Date:11 January 2021
Accepted Date:09 February 2021
Available Online:29 July 2021
Published Online:05 August 2021
Abstract:With the rapid development of the information age, the demand for information storage capacity and miniaturization of memory units has been being increased. However, the commonly used silicon-based flash memory has nearly approached to its physical limit. The resistive switching random access memory (ReRAM) has become one of the promising candidates for the next-generation non-volatile memory due to its simple structure, fast operation speed, excellent flexibility, and long endurance. Recently, we witnessed that the lead halide perovskites, as hot star materials, have been widely used in optoelectronic fields owning to their advantages of low cost, excellent photoelectric properties, and solution process ability. Moreover, the lead halide perovskite has been successfully used as the active layer in ReRAM device because of its tunable bandgap, long charge carrier diffusion length, fast ion migration, and high charge carrier mobility. Whereas the toxicity of lead in halide perovskite is a very horrible problem in lead halide perovskite-based ReRAM devices. The lead-free halide perovskite is considered to be the most promising material for perovskite-based ReRAM devices because it does not contain lead element. Most recently, a large number of scientists from different groups have begun to study lead-free perovskite-based ReRAM devices. For example, tin, bismuth, antimony, and copper-based halide perovskite materials have been utilized in ReRAM devices and exhibited excellent resistance switching (RS) performances. Here in this paper, the recent development of lead-free perovskite and its RS performance are reviewed, including lead-free halide perovskite materials, RS performances, and RS mechanisms of lead-free perovskite-based ReRAM. Finally, the key problems and development prospects of lead-free perovskite-based ReRAM are also presented, which provides a fundamental step towards developing the RS performance based on lead-free halide perovskites. Keywords:lead-free halide perovskite/ resistive switching random access memory/ resistance switching performance/ mechanism of resistance switching
卤素钙钛矿的晶体结构见图1[45], 其化学分子式为ABX3, 其中A代表正一价的有机官能团或金属离子(如MA+(CH3NH3+), FA+(CH(NH2)2+), Cs+或Rb+), 位于原胞的8个顶点; B代表二价金属离子(如Pb2+或Sn2+), 位于四面体原胞中心; X代表卤素元素(Cl–, Br–或I–), 位于四面体的6个表面中心. 其中, 具有制备工艺简单、带隙可调、载流子扩散距离长以及离子迁移速率快的铅基卤素钙钛矿被广泛应用于太阳能电池、发光二极管、场效应管和阻变存储器等领域. 但铅属于重金属, 已被证实了会扰乱动物血液、肾脏、肝脏、睾丸、大脑以及神经系统的功能[46]. 因此, 针对含铅卤素钙钛矿结构中含重金属元素铅, 探索具有优异性能的非铅卤素钙钛矿成为了众多研究者新的探索领域. 目前, 对非铅卤素钙钛矿的研究主要有: 锡基卤素钙钛矿、锗基卤素钙钛矿、铋基卤素钙钛矿、锑基卤素钙钛矿和铜基卤素钙钛矿等. 图 1 卤素钙钛矿分子结构式ABX3 (A: 绿球, 代表正价金属离子或有机官能团. B: 蓝球, 代表金属阳离子. X: 红球, 代表卤素阴离子)[45] Figure1. Crystal structure of trihalide perovskite with a chemical structure of ABX3, where A is the organic cation or metal cation (green), B is the metal cation (blue), and X is the halide anion (red)[45].
图 3 CsSnI3非铅钙钛矿材料及其阻变性能 (a) CsSnI3晶体结构; (b)阻变存储器结构; (c)器件的截面SEM图; Ag/CsSnI3/Pt/Ti/SiO2/Si器件的(d) I-V特性曲线、(e)耐受性和(f)高低阻态保持特性; Au/CsSnI3/Pt/Ti/SiO2/Si器件的(g) I-V特性曲线、(h)耐受性和(i) 50个不同元器件高低阻态[49] Figure3. Resistive switching performance of CsSnI3 lead-free perovskite: (a) CsSnI3 crystal structure; (b) schematic of the Ag or Au/PMMA/CsSnI3/Pt/SiO2/Si vertical stack structure; (c) cross-sectional SEM image of the device; (d) the typical I-V curves, (e) endurance performance, and (f) retention characteristics of low resistances state (LRS) and high resistance state (HRS) of the Ag/PMMA/CsSnI3/Pt devices; (g) the typical I-V curves, (h) endurance performance, and (i) HRS and LRS of 50 different cells of the Au/PMMA/CsSnI3/Pt devices[49].
图 6 铋基非铅卤素钙钛矿阻变存储器 (a) Au/A3Bi2I9/Pt/Ti/SiO2/Si器件结构示意图; (b) Rb3Bi2I9阻变存储器截面SEM图; (c) Cs3Bi2I9阻变存储器截面SEM图; Rb3Bi2I9阻变存储器的(d) I-V特性曲线、(e)耐受性和(f)保持特性; Cs3Bi2I9阻变存储器的(g) I-V特性曲线、(h)耐受性和(i)保持特性[52] Figure6. The Bi-based perovskite resistance random access memory (ReRAM) devices: (a) Schematic of Au/A3Bi2I9/Pt/Ti/SiO2/Si based ReRAM devices; (b) the cross-section SEM image of Rb3Bi2I9 based ReRAM device; (c) the cross-section SEM image of Cs3Bi2I9 based ReRAM device; (d) the typical I-V curve, (e) endurance, and (f) retention of Rb3Bi2I9 based ReRAM; (g) the typical I-V curve, (h) endurance, and (i) retention of Cs3Bi2I9 based ReRAM[52].
图 8 (a) Cs2AgBi2Br6的晶体结构; (b) Au/Cs2AgBi2Br6/ITO阻变存储器的截面SEM; (c)循环耐受性[55] Figure8. (a) Crystal structure of Cs2AgBi2Br6; (b) the cross-section SEM image and (c) the cycle endurance characteristics of Au/Cs2AgBi2Br6/ITO ReRAM[55].
图 9 Au/Cs2AgBi2Br6/ITO 器件在不同恶劣环境下的I-V特性曲线 (a)相对湿度(RH) 10%—80%; (b)温度范围为303—453 K; (c)酒精灯外焰加热10 s; (d)在60Co射线照射下曝露, 总剂量高达5 × 105 rad(SI)[55] Figure9.I-V characteristics of Au/Cs2AgBi2Br6/ITO device in different harsh environments: (a) 10%—80% relative humidity; (b) temperature range from 303 to 453 K; (c) burnt by luminous cone of alcohol lamp for 10 s; (d) exposed under 60Co γ-ray irradiation with a total dose as high as 5 × 105 rad (SI)[55].
22.5.锑基卤素钙钛矿 -->
2.5.锑基卤素钙钛矿
锑(Sb)位于元素周期表中Pb的右上角, 其三价阳离子Sb3+具有与二价Pb2+离子相似的电子构型. 将锑化合物作为人类利什曼病的治疗剂研究已有报道, 证明了锑化合物的低毒性[56], 因此, 人们预计Sb也是铅的无毒替代品. 由于Sb具有高氧化态(+3), 锑基非铅卤素钙钛矿具有低维尺寸的晶体结构, 易形成二聚体结构或层状结构, 典型的化学结构为A3Sb2X9 (A = MA+, FA+或Cs+, X = Cl–, Br–或I–)[57]. Yang 等[58]采用溶液旋涂法合成了基于MA3Sb2Br9的Ag/PMMA/MA3Sb2Br9/ITO阻变存储器(图10), 但由于MA有机官能团的存在, MA3Sb2Br9结构很不稳定, 该器件性能测试需在真空条件下完成. 结果显示, 其开关比为102, 耐受性可达300次, 保持时间为104 s, 将其应用于模拟人工突触, 其功耗低于117.9 fJ/μm2. 虽然其稳定性较差, 但从另一方面揭示了低毒非铅卤素钙钛矿在神经网络计算方面具有可观的应用前景. 图 10 (a) Ag/PMMA/MA3Sb2Br9/ITO阻变存储器结构示意图; (b) MA3Sb2Br9晶体结构; (c) MA3Sb2Br9薄膜截面SEM图; MA3Sb2Br9基阻变存储器的(d) I-V特性曲线、(e)耐久性和(f)保持时间; (g)依赖于连续脉冲的长期增强(LTP)和长期抑制(LTD)现象; (h)突触前和突触后突峰(用于模拟突峰时间依赖性可塑性(STDP)); (i) STDP行为[58] Figure10. (a) Schematic device structure of Ag/PMMA/MA3Sb2Br9/ITO ReRAM; (b) crystal structure of MA3Sb2Br9; (c) cross-sectional SEM image; (d) I-V characteristics, (e) endurance, and (f) retention time of MA3Sb2Br9 based memristors; (g) long-term potentiation (LTP) and long-term depression (LTD) depending on consecutive pulses; (h) presynaptic and postsynaptic spikes for emulating spike timing dependent plasticity (STDP); (i) STDP behavior of an MA3Sb2Br9 memristor[58].
22.6.铜基卤素钙钛矿 -->
2.6.铜基卤素钙钛矿
铜(Cu)是过渡金属, 作为酶的一部分在人体中必不可少, 可用于医学研究和临床实践. 例如用于癌细胞的放射治疗[59]. 在日常生活中可用作普通导体, 与具有3维结构的铅基卤素钙钛矿不同, 铜由于具有较小的离子半径, 且具有两种化合价, 能构建的结构有很多. 电子结构为3d9($ {\rm{t}}_{2{\rm{g}}}^{6} $, $ {\rm{e}}_{\rm{g}}^{3} $)的二价Cu2+离子在空气中比其他两种二价Sn2+与Ge2+更稳定, 例如(p-F-C6H5C2H4-NH3)2CuBr4[60], (CH3(CH2)3NH3)2CuBr4[60]以及MA2CuClxBr4–x[61]等, 都具有稳定的晶体结构. 对于一价Cu+离子构建的卤素钙钛矿在空气中同样稳定. 如2018年Yang等[62]合成的Cs2CuX4 (X = Cl, Br或Br/I)量子点, 该量子点不仅显示出高的光致发光量子产率, 还表现出出色的稳定性; 同年, Jun等[63]合成了Cs3Cu2I5卤素钙钛矿薄膜和单晶, 其蓝光荧光量子产率(PLQY)可达62%, 在空气中保存2个月晶体结构和光学性能依然不发生明显改变. 本团队进一步采用乙酸甲酯作为反溶剂合成了空气中长期稳定、光滑致密的Cs3Cu2I5薄膜[64], 该薄膜在空气中存放2月后, 晶体结构和光学性能仍保持稳定, 并以此合成了Ag/PMMA/Cs3Cu2I5/ITO阻变存储器(图11(a)—(c))[65], 该器件具有双极型阻变性能, 工作电压低于 ± 1 V, 开/关比大于102, 耐受性稳定(100个循环)及保持时间长(> 104 s), 所有测试均在空气中进行. 鉴于氧化物钙钛矿已在神经网络计算领域展现出了应用潜力[66-68], 我们团队进一步采用Ag/PMMA/Cs3Cu2I5/ITO阻变存储器模拟了包括长期增强与长期抑制在内的生物突触行为, 仿真结果显示出94%的手写识别精度(图11(d)—(f))[65]. 揭示了非铅的、结构稳定的铜基卤素钙钛矿在阻变存储器及神经网络计算领域具有广阔的应用前景. 图 11 (a) Cs3Cu2I5非铅钙钛矿晶体结构; Cs3Cu2I5阻变存储器的(b)垂直结构示意图和(c)循环测试; (d)模拟神经突触示意图; (e)线性增强和线性抑制; (f)美国国家标准技术研究院数据库(MNIST)训练数据识别精度[65] Figure11. (a) Cs3Cu2I5 crystal structure; (b) vertical stack structure schematic and (c) cycle tests of the Ag/PMMA/Cs3Cu2I5/ITO memristor; (d) schematic of synapses; (e) linear potentiation and depression; (f) successful recognition accuracy monitored while training the data set from Modified National Institute of Standards and Technology (MNIST)[65].
在非铅卤素钙钛矿阻变存储器中, 存储介质材料与电极材料的接触方式有欧姆接触与肖特基接触, 欧姆接触即非铅卤素钙钛矿与电极材料的费米能级接近, 电流-电压呈线性关系, 而肖特基接触则是非铅卤素钙钛矿与电极材料的功函数相差很大, 导致界面处形成肖特基势垒. 在外加电场作用下, 肖特基势垒宽度会随电压极性发生改变, 可移动电子浓度随着势垒宽度改变而改变, 使得器件在高阻态与低阻态之间发生切换. Han等[49]所报道的Au/PMMA/CsSnI3/Pt/Ti/SiO2/Si卤素钙钛矿存储器中(图13), Au与PMMA/CsSnI3的界面处由于功函数相差较大, 形成肖特基接势垒, 在Au顶电极施加正向偏置电压时, 锡空位在顶电极与p型钙钛矿层的界面积累, 耗尽层宽度减小, 电子更容易隧穿通过肖特基势垒, 器件被置于低阻态; 当顶电极施加反向偏置电压时, 界面上的锡空位减少, 势垒宽度增加, 器件被置于高阻态. 图 13 (a) Au/PMMA/CsSnI3/Pt器件界面型机理示意图[49]; (b)电场作用下, p型钙钛矿层中锡空位的积累引起的耗尽宽度变化[49]; (c)界面型机理示意图 Figure13. (a) Schematic of the interface-type switching mechanism in the Au/PMMA/CsSnI3/Pt device[49]; (b) depletion width variation in the p-type perovskite layer according to the accumulation of Sn vacancies under an electric field[49]; (c) the schematic illustration of interface-type switching mechanism in the switching layer