Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11875121, 11575050, 51977057), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2019201100, A2020201025), and the Postgraduate Innovation Fund Project of Hebei Province, China (Grant No. CXZZSS2020006)
Received Date:09 December 2020
Accepted Date:23 March 2021
Available Online:07 June 2021
Published Online:05 August 2021
Abstract:Atmospheric pressure non-equilibrium low-temperature plasma has been widely used in biomedicine, surface treatment and other fields, which has attracted the attention of researchers extensively. As one of the important methods to generate such a plasma, the plasma jet has become a popular method, which can generate a remote plasma plume at the nozzle through introducing a rare gas flow. However, plasma plume has a small diameter, which results in deficiency for the large-scale surface treatment. A dielectric barrier discharge device with three electrodes is utilized to produce a large brush-shaped plasma plume (50.0 mm × 40.0 mm) downstream of flowing argon under the combined excitation of an alternate current (AC) voltage and a negative bias voltage, thereby increasing the plume scale. The results show that the luminescence intensity of the plasma plume increases with AC peak voltage increasing. By fast photography implemented with an intensified charge coupled device (ICCD), it is found that the plasma plume is composed of temporally superposed branched-streamers. The ICCD images also reveal that the number of branches increases with AC peak voltage increasing. Moreover, the waveforms of AC voltage and light emission signal recorded simultaneously indicate that the plasma plume initiates once per AC voltage cycle, which occurs in the positive half cycle of the applied voltage. With AC peak voltage increasing, the duration and intensity of discharge pulse increase, which results from more branches of the branched streamer. Besides, optical emission spectrum in a range from 300 nm to 850 nm mainly includes OH (A2Σ+–X2Π) peaked at 308.0 nm, the second positive system of N2 (C3Πu–B3Πg), Ar I (4p–4s), and O I (3p3 P–3s3 S) at 844.6 nm. Based on the optical emission spectrum, the plasma parameters such as vibrational temperature and intensity ratio of spectral lines (correlated with electron density and electron temperature) are investigated. Besides, the variation of concentration of oxygen atoms in the plasma plume with experimental parameters is investigated by optical actinometry. The results indicate that the concentration of oxygen atoms first increases and then decreases with the distance increasing along the argon flow direction or with oxygen content of the working gas increasing. In addition, the concentration of oxygen atoms increases with AC peak voltage increasing. All these results are discussed qualitatively. These results are of great importance in modifying the plasma surface on a large scale. Keywords:plasma jet/ branched streamer/ optical emission spectrum/ optical actinometry
全文HTML
--> --> -->
3.结果与讨论当交流电压峰值达到约4.0 kV时, 两铜箔电极间气体击穿产生放电. 随着交流电压峰值的增大, 放电逐渐在长石英片的末端扩展, 并在电压峰值约8.0 kV时在气流下游的自由空间产生了稳定的刷形等离子体羽. 研究发现, 当电压峰值固定为8.0 kV, 当氩气流量大于6.0 L/min时放电容易过渡为间歇性的火花放电. 若保持气流为5.0 L/min, 当交流电压峰值增大到12.0 kV时, DBD装置和第三电极间开始出现间歇性火花放电. 所以, 采用5.0 L/min的氩气流量, 小于12.0 kV的电压峰值来研究刷形等离子体羽的放电特性. 图2给出了不同交流电压峰值下等离子体羽的ICCD图像. 通过图2可以看出, 等离子体羽能连接石英气道末端和第三电极间的区域, 其面积为50.0 mm × 40.0 mm. 等离子体羽在气道末端最亮, 沿着气流方向亮度略有降低. 当交流电压峰值增大到10.5 kV时, 等离子体羽相比低电压下发光更亮, 且变得更均匀. 逐渐缩短ICCD曝光时间, 发现不论高电压还是低电压下等离子羽均是由微放电组成. 1.0 μs曝光时间的ICCD照片表明, 微放电呈现随机的分叉. 这种随机分叉的微放电应该属于流光机制, 因此, 视觉均匀的刷状等离子体羽源于分叉流光的时间叠加. 图 2 不同交流电压峰值及曝光时间下的等离子体羽照片 Figure2. Images of the plasma plume with different peak voltage and exposure time.
图3给出了外加交流电压、放电电流和等离子体羽发光信号的波形. 从图3可以发现, 不论峰值电压(Vp)高低, DBD均呈现一些不规则的电流脉冲. 在一个电压周期内, 等离子体羽仅有一个发光脉冲, 且其放电脉冲对应于电压的正半周期. 对比图3(a)和图3(b)可以发现, 增加交流电压的幅值, 放电的电流脉冲个数增加, 且等离子体羽的光脉冲强度增大. 图3中的光强度为负值是由光电倍增管的工作原理决定的. 光子入射到光电倍增管的光阴极后, 通过光电效应光阴极发射电子, 这些电子经过一系列打拿极实现电子数倍增后, 最后被阳极收集, 输出信号. 显然, 由于阳极收集电子, 所以阳极对应的电压信号是负值. 图 3 外加电压、放电电流和刷形等离子体羽发光信号的波形 (a) 交流电压的幅值为8.0 kV; (b) 交流电压的幅值为10.5 kV Figure3. Waveforms of applied voltage, discharge current and integrated emission from the brush-shaped plasma plume: (a) The amplitude of alternating current of 8.0 kV; (b) the amplitude of alternating current of 10.5 kV.
DBD在介质表面累积记忆电荷, 这些记忆电荷会抵消外加电场, 从而熄灭本电压半周期的放电. 但当外加电压反向(下半周期来临), 这些记忆电荷对放电有促进作用. 在这些记忆电荷的作用下, 大气压氩气放电通常呈现丝状放电模式[27], 从而电流表现为一些随机的放电脉冲(图3). 如果气道口的电介质上沉积了足够多的记忆电荷, 则会产生电荷溢流效应[28], 引起下游区域的流光放电. 也就是说, 随着气道中DBD放电的进行, 气道口接地电极附近的电介质板上积累的电荷增多, 引起气道口附近的电场增强. 当其电场达到击穿场阈值时, 引起向着气流下游传播的分叉流光. 为了进一步深入地了解这种放电现象的放电机制, 利用ICCD拍摄了单个放电周期即曝光时间为13.0 μs下的放电照片, 如图4所示. 从图4可以观察到, 不论交流电压高低, 每个电压周期内仅出现一个分叉流光, 不同的分叉流光出现在DBD区域的位置也是随机的. 随着Vp的升高, 每个分叉流光的分叉个数增多, 同时放电横向扩展的尺寸也有所增大. 对于这一现象可以分析如下. DBD放电会随着交流电压峰值增大而增强. 这意味着峰值电压增加时, DBD会释放更多的光子, 从而在周围空间产生更多的种子电子. 种子电子的增多表明正流光在传播过程中有更多的分叉概率, 从而表现为更多的分叉. 因此, 随着交流电压峰值增加, 分叉流光的分叉数目增多. 更多分叉的流光必然产生更大的发光强度, 因此在图3中每次放电的光脉冲强度增加. 图 4 不同Vp下的ICCD照片 (曝光时间为13.0 μs) (a)?(c) 8.0 kV; (d)?(f) 10.5 kV Figure4. ICCD images with an exposure time of 13.0 μs for the plume at different Vp: (a)?(c) 8.0 kV; (d)?(f) 10.5 kV.
图 6 谱线强度比和分子振动温度沿空间位置(a)、随氧气含量 (b) 和电压峰值 (c) 的变化 Figure6. Intensity ratio of spectral lines and vibration temperature as a function of Y coordinate (a), oxygen concentration (b) and peak voltage (c).