1.Zhejiang Key Laboratory of Light Field Control Technology, Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China 2.Jinhua Zixin Technology Co., Ltd., Jinhua 321015, China
Fund Project:Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY20F040005) and the Scientific Research Starting Foundation of Zhejiang Sci-Tech University, China (Grant No. 20062224-Y)
Received Date:22 January 2021
Accepted Date:07 February 2021
Available Online:17 June 2021
Published Online:20 June 2021
Abstract: Ultraviolet photodetector plays an important role in fire warning, missile tracking and dose detecting of ultraviolet sterilization and disinfection, which is closely related to human lives. With the development of integrated detection system, the requirements for the size and energy consumption of the detector are becoming more and more stringent. Traditional detector that requires an external power supply can no longer meet these requirements. Moreover, a traditional ultraviolet detector is mainly composed of first-generation semiconductors and second-generation semiconductors. These semiconductors have small band gaps and large cut-off wavelengths, and are more suitable for infrared detection. When used for implementing the ultraviolet detection, an additional layer is often required, which increases not only the volume but also the cost. Gallium nitride (GaN), as a third-generation semiconductor, has a band gap of 3.4 eV and a corresponding absorption edge of 365 nm. It is a natural ultraviolet detection material. At the same time, the excellent physical and chemical properties make the devices prepared by GaN have high stability. In recent years, some studies have shown that the GaN-based ultraviolet photodetectors have excellent responsiveness, but each of these detectors usually requires an external bias and has a slow response speed. Here, we propose a high responsivity, fast response speed and self-powered ultraviolet photodetector based on NiO/GaN p-n junction. By using the magnetron sputtering, a layer of 70 nm thick p-NiO film is deposited on a high-quality n-GaN film that has been grown on a sapphire substrate by the metal-organic chemical vapor deposition. The fabricated p-n junction shows obvious rectification characteristics at ± 0.5 V. Due to the existence of the built-in electric field, the device can work without externally applied bias. Under zero bias, the detector shows a responsivity of 272.3 mA/W for 365 nm ultraviolet light while the intensity is 50 μW/cm2, and has a detectivity as high as 2.83 × 1014 Jones. This indicates that the detector has a high sensitivity even for very weak light. Owing to the good crystallinity of the film, the dark current is as low as 10–10 A, the switching ratio is > 103, and the response speed reaches 31 ms. These excellent properties show the broad application prospects of the devices based on NiO/GaN p-n junctions in the field of self-powered ultraviolet detection, and thus providing new ideas for the future development of intelligent integration. Keywords:ultraviolet photodetector/ self-powered technology/ GaN/ NiO
分别在GaN与NiO膜上方磁控溅射Ti/Au作为复合电极. 通过X射线衍射(X-ray diffraction, XRD, D8Discovery)、紫外-可见分光光度计(UV-2600)、场发射扫描电子显微镜(scanning electron microscope, SEM, HITACHI S-4800)分别对NiO膜和GaN膜进行表征. 利用半导体测量系统(4200-SCS)对器件的光电性能进行测试, 使用的光源波长分别为254和365 nm.
3.结果与讨论在Al2O3衬底上生长的不同时间的NiO薄膜的XRD结果如图1(a)所示, 在36.5°附近显示出明显的特征衍射峰并且除此之外再无其他衍射峰, 说明制备的NiO薄膜具有良好的结晶性并且沿着(111)晶面择优生长. 随着溅射时间的增加, 薄膜的厚度增大, 晶体的衍射峰强度升高, 半高峰宽减小, 相应的结晶性变好. 图1(a)中其余3个位置的衍射峰均来源于蓝宝石衬底, 其中41.7°对应Al2O3的(0001)面, 37.5°和40°位置的小峰则对应Al2O3的(004)和(200)面. 图1(b)是NiO薄膜紫外-可见吸收谱, 可以看到NiO薄膜对紫外光有着强烈的吸收, 利用Tauc等提出的公式[21] 图 1 生长在蓝宝石衬底上的NiO薄膜的XRD图谱(a)和紫外-可见吸收图谱(b)以及NiO光学带隙(插图); 生长在GaN膜上的NiO薄膜的XRD图谱(c)和紫外-可见吸收图谱(d)以及GaN的光学带隙(插图) Figure1. (a) XRD patterns and (b) UV-vis absorption spectra of the NiO film deposited on sapphire substrate (0001) plane. (panel (b) insert) Plots of (αhν)2 versus photon energy of the NiO film; (c) XRD patterns and (d) UV-vis absorption spectra of the NiO film deposited on GaN film. (panel (d) insert) Plots of (αhν)2 versus photon energy of the GaN film.
可以计算得出NiO薄膜的带隙为$ {E}_{\mathrm{g}\mathrm{N}\mathrm{i}\mathrm{O}} $ = 3.24 eV. 图1(c)为在GaN衬底上生长的NiO薄膜的XRD图, 由于GaN的衍射峰太强和NiO膜较薄, 所以只能观察到溅射2 h的NiO薄膜的(111)晶面的衍射峰, 可看到在GaN上生长的NiO和在Al2O3上生长的NiO具有相同的择优生长方向. 图1(d)为GaN薄膜和GaN/NiO复合薄膜的吸收光谱, 可看到GaN薄膜对365 nm附近的紫外光具有强烈的吸收, 并且复合了NiO薄膜之后, 其对波长大于365 nm的光没有明显变化, 但对小于365 nm的紫外光吸收有明显的增强. 说明覆盖的NiO薄膜具有良好的可见光透过性, 不仅没有阻碍光的透过反而增强了光的吸收, 有利于制备p-n结器件. 图1(d)插图显示GaN的光学带隙${E}_{\mathrm{g}\mathrm{G}\mathrm{a}\mathrm{N}} \!=\!3.36\;{\rm eV}$. 之后对NiO/GaN p-n结的电流-电压(I-V)特性进行了测试, 如图2(c)所示, 在黑暗条件下显示出了明显的整流特性, 插图为器件的简单示意图. 为了验证这个整流效应是否来源于GaN与NiO构成的p-n结, 分别对单层NiO MSM结构和单层GaN MSM结构在相同条件下进行了I-V测试, 结果如图2(a)和图2(b)所示. 其中NiO显示出了良好的欧姆接触, GaN显示出了准欧姆接触. 插图中分别显示了两个器件在0 V偏压下对365 nm紫外光的电流-时间(I -T )光响应特性曲线, 可以看到此时两个器件在不外加电压的情况下几乎没有光电流产生. 以上结果表明图2(c)所观察到的整流特性来源于GaN与NiO形成的p-n结, 同时± 0.5 V下整流比大于102. 图2(d)显示出了不同光强的365 nm紫外光照射下NiO/GaN p-n结器件的I -V特性, 可以观察到在0 V下器件具有明显的光响应, 并且随着光强的增大光电流值增加. 图 2 (a) 在365 nm光照下和黑暗中的NiO MSM结构的I -V曲线, 插图NiO MSM结构示意图和0 V下的I -T曲线; (b) 在365 nm光照下和黑暗中的GaN MSM结构的I -V曲线, 插图为GaN MSM结构示意图和0 V下的I -T曲线; (c) 黑暗中NiO/GaN p-n结的I -V特性, 插图为NiO/GaN p-n结器件结构示意图; (d) 不同强度的365 nm光照下NiO/GaN p-n结的I -V特性 Figure2. (a) I-V curves of the NiO MSM structure in dark and under 365 nm light illumination, (insert) diagram of the NiO MSM structure and I -T curve under zero bias; (b) I -V curves of the GaN MSM structure in dark and under 365 nm light illumination, (insert) diagram of the GaN MSM structure and I -T curve under zero bias; (c) I -V curve of the NiO/GaN p-n junction in dark, (insert) diagram of the device based on NiO/GaN p-n junction; (d) I -V curves of the NiO/GaN p-n junction under 365 nm light with various light intensities.
基于NiO/GaN p-n结的光电探测器的结构示意图如图3(a)所示, 下方为Al2O3衬底, 中间的GaN层约4.5 μm厚, 上方的NiO层约70 nm厚(图3(b)), Ti/Au电极约70 nm厚(如插图所示), 不同层之间具有清晰的边界. 图 3 (a) 基于NiO/GaN p-n结的光电探测器结构示意图; (b) NiO/GaN p-n结的截面SEM图, 插图为镀有电极的p-n结截面SEM放大图 Figure3. (a) Schematic illustration of the fabricated prototype NiO/GaN p-n junction photodetector; (b) cross-sectional SEM image of the NiO/GaN p-n junction, where the insert is the enlargement cross-sectional SEM image of p-n junction with electrode plating.
在没有外加偏压的情况下, 探测器对紫外光具有明显响应, 例如在700 μW/cm2的365 nm光照射下, 电流值从黑暗条件下的0.17 nA迅速上升至275 nA, 在1300 μW/cm2的254 nm光照下, 光电流值从0.17 nA迅速上升至223 nA. 关闭光照后, 探测器的电流值迅速下降到初始水平(图4(a)). 其中对于365 nm和254 nm光的开关比($ {I}_{\mathrm{o}\mathrm{n}}/{I}_{\mathrm{o}\mathrm{f}\mathrm{f}} $)分别达到1617和1311. 之后对探测器的光响应速度进行了测试, 结果如图4(b)所示, 其中$ {\tau }_{\mathrm{r}}/{\tau }_{\mathrm{d}} $分别为37 ms/31 ms. 为了进一步了解NiO/GaN p-n结内部载流子的输运情况, 图4(c)给出了NiO/GaN p-n的能带结构. 其中GaN和NiO的电子亲和能($ \chi $)分别为4.2 eV和1.8 eV, 上面测得$ {E}_{\mathrm{g}\mathrm{N}\mathrm{i}\mathrm{O}} $ = 3.24 eV, $ {E}_{\mathrm{g}\mathrm{G}\mathrm{a}\mathrm{N}} $ = 3.36 eV, 由此可以计算得出导带差($ {\Delta }{E}_{\mathrm{C}} $)和价带差($ {\Delta }{E}_{\mathrm{V}} $): 图 4 (a) 0 V电压下探测器对254和365 nm光照的I -T响应; (b) 对365 nm的光响应速度拟合; (c) NiO/GaN p-n结的能带图; (d) 不同偏压下探测器对365 nm光照的I -T响应 Figure4. (a) I -T curves of the photodetector under a zero bias at 254 and 365 nm illumination; (b) enlarged view of the rise/decay edges and the corresponding exponential fitting; (c) energy band diagrams of NiO/GaN p-n junction; (d) I -T curves of the photodetector under various biases with a 365 nm light illumination.