Fund Project:Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 162300410254)
Received Date:19 November 2020
Accepted Date:05 January 2021
Available Online:25 May 2021
Published Online:05 June 2021
Abstract:Inorganic cesium lead triiodide (CsPbI3) perovskite films show great prospect due to their high thermal stability and ideal band gap energy. To be used as a photovoltaic absorber, the CsPbI3 must form the black phase (α-CsPbI3). To prepare high-quality CsPbI3 films with phase stability in air at low temperatures, alkali metal iodides and hydroiodic acid (HI) additives are added into precursor solution. The results show that the quality and the phase stability of CsPbI3 with alkali metal iodides and HI additives are obviously improved compared with those with only HI additive. The SEM images show that the CsPbI3 film with 2.5% KI additive becomes more compact than that without KI additive and has no visible pinholes. As the KI additive increases, pinholes start to appear. From the XRD, it can be seen that the crystallinity of perovskite is improved when KI additive increases to 5.0%, while it starts to decrease with KI additive further increasing. The PL intensity of the CsPbI3 film with 2.5% KI additive is higher than the others’, implying a relatively low non-radiative recombination loss and low defect state in that film. And the CsPbI3 film with 2.5% KI additive exhibits increased absorption in the visible region, which is beneficial to enhancing the efficiency of perovskite solar cells. Considering the SEM images, crystallinity, PL intensity and light absorption of perovskite, the optimized KI additive is 2.5% in our work. For the CsPbI3 film with NaI additive, the SEM images show that the films become more compact and have no visible pinholes when NaI additive is 5%. As the NaI additive increases, pinholes appear. The crystallinity of perovskite increases with NaI additive increasing. The PL intensity of the CsPbI3 film with 5% NaI additive is higher than the others’, implying lower defect states in films. And the CsPbI3 film with 5% NaI additive exhibits the improved absorption in the visible region. Considering the SEM images, crystallinity, PL intensity and light absorption of perovskite, the optimized NaI additive is 5%. Therefore, adding alkali metal iodides and HI is an effective method to further improve the stability and efficiency of CsPbI3 perovskite solar cells. Keywords:CsPbI3 film/ alkali metal iodide/ HI/ stability
图1比较了不同KI掺杂浓度CsPbI3薄膜的SEM图像, 从图中看出, 未掺杂的CsPbI3薄膜孔洞较多, 薄膜不致密, 而2.5% KI掺杂浓的CsPbI3 薄膜致密度提高, 表面无明显孔洞. 随着KI掺杂浓度增加, 薄膜表面孔洞开始增多, 致密度下降. 这表明低浓度的KI掺杂(2.5%)能够减少CsPbI3钙钛矿薄膜内的空洞, 提高致密度, 有利于制备高性能的钙钛矿薄膜太阳电池. 图 1 不同KI掺杂浓度CsPbI3薄膜的SEM图像 (a) x = 0%; (b) x = 2.5%; (c) x = 5.0%; (d) x = 7.5%; (e) x = 10.0% Figure1. SEM surface images of CsPbI3 perovskite films doped with different KI content: (a) x = 0%; (b) x = 2.5%; (c) x = 5.0%; (d) x = 7.5%; (e) x = 10.0%.
图2为不同KI掺杂浓度CsPbI3薄膜的XRD图谱. 从图中看出, 对应CsPbI3钙钛矿相的主要衍射峰14.2°和28.6°在5个样品中都出现, 这说明都形成了较好的钙钛矿薄膜, 并且均沿(100)面择优生长. 随着KI掺杂浓度的增加, (100)峰强度先增加后减小, 掺杂浓度为5%时达到最大值. 图2(b)为(100)峰半高宽值(FWHM), 随着掺杂浓度的增加, 半高宽先减小后增加, 掺杂浓度为5% KI时半高宽最小. 这说明掺杂浓度为5%时晶粒尺寸最大. 因此低浓度的KI掺杂有利于薄膜结晶, 增大晶粒尺寸, 而高浓度的KI掺杂(10%)使CsPbI3薄膜结晶下降. 图 2 不同KI掺杂浓度CsPbI3薄膜的 (a) XRD图谱与(b)(100)衍射峰半高宽 Figure2. (a) (XRD) patterns of CsPbI3 perovskite films doped with different KI content and (b) full width of half maximum at (100) peak
图3为不同KI掺杂浓度CsPbI3薄膜的PL谱和吸收谱. 从图3(a)可以看出, KI掺杂浓度为2.5%的样品PL峰强最强, 这说明较少的非辐射复合发生, 暗示薄膜内部缺陷较少, 而较少的缺陷有利于制备高性能的器件. 但随着KI掺杂浓度的增加, PL峰强均有所减弱, 说明薄膜内缺陷增加, 薄膜质量下降. 所以KI最佳掺杂浓度为2.5%. 图3(b)为不同KI掺杂浓度CsPbI3薄膜的吸收谱, 从图中可以看出KI掺杂对CsPbI3薄膜的带隙影响不大, 其中2.5% KI掺杂和未掺杂样品的带隙几乎一致, 而高浓度(5.0%, 7.5%, 10.0%)掺杂后CsPbI3薄膜的带隙略微减小. 总之2.5% KI掺杂对CsPbI3带隙的影响很小, 且PL峰强较强, 有利于制备高质量的CsPbI3薄膜. 图 3 不同KI掺杂浓度CsPbI3薄膜的(a) PL谱和(b)吸收谱 Figure3. (a) PL spectra and (b) UV-vis absorption spectra of CsPbI3 films doped with different KI content.
23.2.钠离子掺杂对CsPbI3薄膜性能的影响 -->
3.2.钠离子掺杂对CsPbI3薄膜性能的影响
图4比较了不同NaI掺杂浓度CsPbI3薄膜的SEM图像, 从图中可以看出, 未掺杂的CsPbI3薄膜孔洞较多, 薄膜不致密, 低浓度NaI掺杂能够明显改善薄膜的致密度, 薄膜表面孔洞明显减少, 掺杂浓度为5.0%时薄膜表面无明显空洞, 薄膜致密. 随着掺杂浓度的进一步增加, 薄膜的孔洞又明显增多. 这说明钠离子掺杂也是一种提高CsPbI3薄膜致密性, 减少钙钛矿薄膜的缺陷的有效方法, NaI掺杂浓度为5.0%时薄膜致密性较好. 图 4 不同NaI掺杂浓度CsPbI3薄膜的SEM图像 (a) x = 0%; (b) x = 2.5%; (c) x = 5.0%; (d) x = 7.5%; (e) x = 10.0% Figure4. SEM surface images of CsPbI3 perovskite films doped with different NaI content: (a) x = 0%; (b) x = 2.5%; (c) x = 5.0%; (d) x = 7.5%; (e) x = 10.0%.
图5为不同NaI掺杂浓度CsPbI3薄膜的XRD图谱. 从图中看出, 对应CsPbI3钙钛矿相的主要衍射峰14.2°和28.6°在5个样品中都出现, 这说明都形成了较好钙钛矿薄膜, 并且均沿(100)面择优生长. 随着NaI掺杂浓度的增加, (100)峰强度增加, CsPbI3薄膜结晶度提高. 这表明NaI掺杂有利于薄膜结晶. 图 5 不同NaI掺杂浓度CsPbI3薄膜的XRD图谱 Figure5. XRD patterns of CsPbI3 films with different NaI content.
图6为不同NaI掺杂浓度CsPbI3薄膜的PL和吸收谱. 从图6(a)可以看出, 5.0% NaI掺杂的样品PL峰最强, 说明发生非辐射复合较少, 暗示薄膜内部缺陷较少, 而较少的缺陷有利于制备高性能的器件. 与未掺杂样品相比, NaI掺杂浓度低于或高于5.0%的薄膜PL峰强均有所减弱, 说明薄膜中含有较多缺陷. 所以NaI的最佳掺杂浓度为5.0%. 图6(b)为不同NaI掺杂浓度CsPbI3薄膜的吸收谱. 从图中可以看出NaI掺杂对CsPbI3薄膜的带隙影响不大, 且NaI掺杂浓度为5.0%和7.5%时吸收明显增加, 有利于增加光的吸收, 提高太阳电池的效率. 总之5.0% NaI掺杂对CsPbI3带隙的影响很小, 且PL峰强较强, 光吸收增加, 有利于制备高质量的CsPbI3薄膜. 图 6 不同NaI掺杂浓度CsPbI3薄膜的(a) PL谱和(b)吸收谱 Figure6. (a) PL spectra, (b) UV-vis absorption spectra of CsPbI3 films doped with different NaI content.
23.3.NaI和KI掺杂对CsPbI3薄膜稳定性的影响 -->
3.3.NaI和KI掺杂对CsPbI3薄膜稳定性的影响
图7(a)为未掺杂、2.5% KI和5.0% NaI掺杂的CsPbI3薄膜在湿度为30%的空气中放置24 h后的XRD图谱. 从图中可以看出, 未掺杂样品放置24 h后α-CsPbI3衍射峰强变弱, δ-CsPbI3衍射峰出现, 说明其黑相部分变成了黄相. 而KI和NaI掺杂的样品, 衍射峰位不变, 仍保持黑相. 图7(b)为未掺杂、2.5% KI和5.0% NaI掺杂的CsPbI3薄膜在湿度为30%的空气中放24 h后的PL图谱. 从图中可以看出: 未掺杂的样品放置24 h后对应黑相的PL峰强减弱, 说明部分已经发生了相变; 由于激发波为467 nm, 因此对应黄相的PL峰(420 nm)无法测量; 而KI和NaI掺杂的样品, PL峰强无明显变化, 基本重合, 仍保持黑相. 上面结果说明了KI和NaI掺杂能够明显提高CsPbI3薄膜的稳定性. 图 7 未掺杂(0%)、2.5% KI和5.0% NaI掺杂CsPbI3薄膜 (a)在空气中放置24 h后的XRD图谱和(b)新鲜制备及空气中放置24 h后的PL图谱 Figure7. (a) XRD patterns of undoped, 2.5% KI and 5.0% NaI doped CsPbI3 films exposed for 24 h in ambient air, and (b) PL patterns of the above as-deposited films and films exposed for 24 h in ambient air.