1.Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China 2.College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
Fund Project:Project supported by the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2019jcyj-msxmX0501, cstc2020jcyj-msxmX0616) and the Science and Technology Research Project of Chongqing Education Committee, China (Grant Nos. KJ1703044, KJ1703062, KJ1600520)
Received Date:18 November 2020
Accepted Date:13 January 2021
Available Online:25 May 2021
Published Online:05 June 2021
Abstract:Developing efficient thermoelectric materials has never lost the attraction due to their promising performances in the energy conversion. The different mechanisms of phonon scattering lead to the various outstanding performances of layered materials in thermoelectric properties. So we investigate the structure, electronic and thermoelectric transport properties of Penta-XTe2 (X = Pd, Pt) layers based on the density functional theory and Boltzmann transport theory. Those monolayers have a beautiful penta-graphene-like buckled structure with a space group of P2_1/c (No.14). The values of optimized lattice constant a (b) are 6.437 ? (6.145 ?) and 6.423 ? (6.12 ?) for PdTe2 and PtTe2 monolayers, respectively. In order to assess the stability, we calculate the phonon dispersion along the high symmetry lines in the Brillouin zone. The second-order harmonic and third-order anharmonic interatomic force constants (IFCs) are calculated by using 5 × 5 × 1 supercell and 4 × 4 × 1 supercell based on the relaxed unit cell. All these results indicate that those monolayers are thermodynamically stable. Energy band structure is essential in obtaining reliable transport properties. So we calculate the band structures of penta-XTe2. Both PdTe2 and PtTe2 are semiconductors with indirect band gaps of 1.24 eV and 1.38 eV, respectively, which are in good agreement with previous experimental and theoretical results.The lattice thermal conductivity of XTe2 decreases with temperature increasing, but the electronic thermal conductivity varies with temperature in the opposite way exactly. It is found that the thermal conductivity comes from the contribution of the lattice thermal conductivity at low temperature. The room-temperature total thermal conductivities in the x (y) direction of the PdTe2 and PtTe2 monolayers are 3.95 W/(m·K) (2.7 W/(m·K)) and 3.27 W/(m·K)(1.04 W/(m·K)), respectively. The contribution of low thermal conductivity indicates that the thermoelectric properties of PtTe2 monolayer may be better than those of PdTe2 monolayer.The relaxation time (τ) and carrier mobility (μ) are obtained based on the Bardeen-Shockley deformation potential (DP) theory in two-dimensional materials. Remarkably, they have the higher hole mobility than the electron mobility. The anisotropic electronic transport properties of XTe2 are obtained by solving Boltzmann transport equation. The electrical conductivity over relaxation time (σ/τ) and Seebeck coefficient (S) contribute to the figure of merit ZT. High Seebeck coefficient (S) with the value larger than 400 μV/K can be found in both p-type and n-type cases, suggesting that the TE performance of XTe2 may be considerable. The room-temperature largest ZT values of penta-XTe2 (X = Pd, Pt) at p-type are 0.83 and 2.75 respectively. The monolayer PtTe2 is a potential thermoelectric material. Keywords:first-principles theory/ transport properties/ thermoelectric effects/ electric and thermal conductivity
图 3 PdTe2 (a)和PtTe2 (b)单层沿布里渊区高对称方向的能带结构 Figure3. Calculated energy-band structure of layered PdTe2 (a) and PtTe2 (b) along high-symmetry directions of the Brillouin zone.
晶格热导主要源于声子间的非谐效应, 是声子模式热导贡献的总和. 每一支声子模式的热导与声子群速度有关, 与声子群速度的平方成正比. 通过声子谱计算了声子群速度, 如图4所示. 图4展示了声学分支3种模式: LA (纵声学支), TA (横声学支)和ZA (平面外的声学支)的声子群速度. 声子群速度ZA分支小于TA和LA分支. 对于层状结构, ZA分支的频率依赖于波矢, 二次声子分支在许多非应变二维材料中普遍存在, 是ZA支靠近Г点时非线性离散的可能原因[37]. 图 4 单层PdTe2 (a)和PtTe2 (b)群速度的三支声学分支(LA, TA 和ZA)随频率的变化 Figure4. Variation of group velocity of three acoustic branches (ZA, TA, LA) with the frequency of PdTe2 (a) and PtTe2 (b) monolayers.
通常来说, 具有褶皱结构的二维材料打破了平面外的对称性, 增加了非谐声子的散射, 进而降低晶格热导[38]. 温度为300 K时, PdTe2和PtTe2总声子散射率随频率的变化如图5所示. 当声子频率较低时, ZA, TA和LA声学分支的声子散射率随声子频率的增大而增大, ZA分支的声子色散率最小. 高频部分的光学分支散射范围较大, 3个声学支声子散射率远远小于光学支的声子散射率. PtTe2的声子散射率比PdTe2的更大, 更离散, 导致了PtTe2的声子寿命比PdTe2更短, 进而可能导致PtTe2的晶格热导相对较小. 图 5 室温下PdTe2 (a)和PtTe2 (b)单层的声子色散率随频率的变化关系, LA, TA 和ZA为三支声学分支 Figure5. Phonon scattering rates of PdTe2 (a) and PtTe2 (b) monolayers at room temperature, where ZA, TA and LA are acoustic branches.
热导率是影响材料热电性能的重要因素, 热电性能表现优异的材料通常具有较低的热导率. 通过求解玻尔兹曼输运方程可以得到PdTe2和PtTe2材料的热导率[28]. 材料的晶格热导率随温度的变化率如图6 (a)所示. 随着温度的升高, 声子的平均自由程会大幅减小, 晶格热导率随温度的升高而降低, 同时表现出x, y方向的各向异性. 在300 K时, PdTe2在x, y方向晶格热导率分别为3.95和2.70 W/(m·K). PtTe2单层在x, y方向晶格热导率分别为3.27和1.04 W/(m·K), PtTe2的晶格热导率低于PdTe2. 由Wiedemann-Franz 定律可以得到电子热导率. 我们对比了PdTe2和PtTe2晶格热导率及电子热导率, 展示了总热导率随温度变化的情况, 如图6 (b), (c)所示. 随着温度升高, 自由电子运动加快, 热电子扩散迅速, 电子热导率升高. 电子热导率随温度升高而增大, 与晶格热导率随温度的变化关系呈相反的趋势. 计算出来的总热导率情况表明, 低温时, 晶格热导率对总热导率的贡献占据主导地位. PdTe2 和PtTe2在300 K的总热导率分别为4.22和2.2 W/(m·K). 对比发现, PtTe2具有更低的热导率, 可能具有比PdTe2更优异的热电性能. 图 6 (a) PdTe2和PtTe2层状材料的晶格热导率沿x, y方向随温度的变化率; PdTe2 (b)和PtTe2 (c) 晶格热导率, 电子热导率及总热导率随温度变化的关系 Figure6. (a) Calculated lattice thermal conductivity of monolayer PdTe2 and PtTe2 along the x (dark dashed line) and the y (red dashed line) directions and from 200 K to 800 K with the interval of 100 K; thermal conductivity of PdTe2 (b) and PtTe2 (c) at different temperatures, where ke is electron thermal conductivity, kl is lattice thermal conductivity, and ke + kl is total thermal conductivity.
表2温度为300 K时, PdTe2和PtTe2的有效弹性模量C2D、形变势常量El、有效质量m*、载流子迁移率μ及弛豫时间τ Table2.Calculated elastic modulus C2 D, DP constant El, effective mass (m*), carrier mobility (μ), and relaxation time (τ) at 300 K of PdTe2 and PtTe2 monolayers.
通过求解电子玻尔兹曼输运方程[27], 我们计算了XTe2 (X = Pd, Pt)的电输运参数, 如: 电导率与弛豫时间的比值(σ/τ), Seebeck系数(S)等. 电导率与弛豫时间的比值随载流子浓度及时间的变化如图7所示. σ/τ 的值随载流子浓度的增大而增大, 也随温度的升高而增大, 温度变化对σ/τ 变化率的贡献远小于载流子浓度的贡献. 对于PdTe2单层, p型掺杂时, 各向异性对σ/τ 的影响不明显; n型掺杂时, σ/τ 沿x方向上的值远大于y方向的值. 对于PtTe2单层, p型掺杂时, 各向异性对σ/τ 的影响同样不明显; n型掺杂时, σ/τ 沿y方向上的值大于x方向的值. 图 7 p型掺杂时, PdTe2 (a)和PtTe2 (b)两种材料在不同温度下沿x, y两个方向σ/τ 随载流子浓度的变化. n型掺杂时, PdTe2 (c)和PtTe2 (d)两种材料在不同温度下沿x, y两个方向σ/τ 随载流子浓度的变化 Figure7. Calculated electrical conductivity of p-type (a), (b) and n-type (c), (b) monolayer PdTe2 and PtTe2 along the x and the y directions from 300 K to 900 K with the interval of 300 K.
不同温度下塞贝克系数S随载流子浓度变化的关系如图8所示, S随载流子浓度的增加而减小, 随温度的增加而增大. 温度变化对S的影响较小. 从表1结果中可以看出, 不同方向的有效质量相差较大, 但不同传输方向的塞贝克系数却相差较小, 说明XTe2 (X = Pd, Pt)在电子输运性质上表现较弱的各向异性. 当温度为300 K时, p和n型掺杂的PdTe2 单层S值最大值分别可以达到694, 728 μV/K; p和n型掺杂的PtTe2 单层S值最大值可以达到706, 681 μV/K. 塞贝克系数和电导率对材料转换效率有极大的影响. 图 8 p型掺杂时, PdTe2 (a)和PtTe2 (b)两种材料在不同温度下沿x, y两个方向的塞贝克系数S随载流子浓度的变化. n型掺杂时, PdTe2 (c)和PtTe2 (d)两种材料在不同温度下沿x, y两个方向的塞贝克系数S随载流子浓度的变化 Figure8. Calculated Seebeck coefficient S of p-type (a), (b) and n-type (c), (d) monolayer PdTe2 and PtTe2 along the x and the y directions from 300 to 900 K with the interval of 300 K.