1.College of Prospecting and Surveying Engineering, Changchun Institute of Technology, Changchun 130021, China 2.College of Physics, Changchun Normal University, Changchun 130032, China
Fund Project:Project supported by the Jilin Provinical Science and Technology Department Project, China (Grant No. YDZ J202101ZYTS158), the Natural Science Foundation of Changchun Institute of Technology, China (Grant No.320190005), the Science Research Program of Jilin Provincial Education Department of China (Grant No.JJKH20200828KJ), and the Natural Science Foundation of Changchun Normal University, China (Grant No. 001010)
Received Date:25 November 2020
Accepted Date:24 February 2021
Available Online:13 May 2021
Published Online:20 May 2021
Abstract:Double electric layer capacitor is a kind of supercapacitor with high power density, but has relatively low energy density. Improving the quantum capacitances of materials will be a new way to increase their total interface capacitances. We design a two-dimensional electrode material with a high specific capacity and stable crystal structure. Due to the quantum confinement effect and the density of states, the quantum capacitances of two-dimensional materials such as graphene and silicene approach to zero when they are near the Fermi level. On the basis of the first principles of density functional theory, doping and adsorption can effectively modulate the electronic structure of two-dimensional electrode material such as graphene. It promotes the formation of the local state of the electrode material near the Dirac point and/or the movement of the Fermi level, thereby improving the quantum capacitance. Compared with the quantum capacitance of Ti (Au, Ag, Cu, Al), and 3-B (N, P, S) doped single-vacancy graphene (silicene, germanene), the quantum capacitance of 3-N doped single-vacancy graphene and of Ti atom adsorbed single-vacancy silicene/germanene are both significantly improved, and their quantum capacitances are as high as 118.42 μF/cm2, 79.84 μF/cm2, and 76.54 μF/cm2. The concentration effects of 3N-doped three kinds of alkenes are studied, and the results show that the quantum capacitance is enhanced with the doping concentration increasing. It is also found by studying the thermodynamic stability of the doped systems that Ti is the most stable adsorbed atom because of the strong bond between Ti atom and C atom. The S is the most stable doping atom in B, N, P, S doped single-vacancy silicene and germanene. For graphene, N doping has the lowest formation energy and the best quantum capacitance. This study intends to clarify the controversy regarding the energy storage enhancement of two-dimensional double-layer supercapacitor materials, and to improve the quantum capacitance. The research results provide the guidance for understanding the quantum effects caused by optimizing the structure of two-dimensional electrode material. The above theoretical calculation of the mentioned two-dimensional electrode material provides some research ideas for improving the low energy density of electric double-layer supercapacitors. Keywords:quantum capacitance/ two-dimensional electrode material/ doping/ first principles
其中ΔE3-N(B, P, S)(x)为图1(c)中3-N (B、P、S)非金属原子掺杂单空位石墨烯的形成能; Edf-G(x)表示掺杂单空位石墨烯的总能量; n表示各结构中原子总数; μC是本征石墨烯中一个C原子的能量; μN, μB, μP, μS分别是根据N2, B12, P4和S8体系计算得出的单个原子的能量. 由于它们是N, B, P, S原子的低能态, 因此将它们作为参考态. 所有计算都是基于超胞P(4 × 4)展开. 图 1 (a), (b) 金属原子分别在本征和单空位锗烯(硅烯, 石墨烯)上的最稳定吸附位置的吸附能, 掺杂浓度为3.1%; (c) 单空位锗烯(硅烯, 石墨烯)掺杂3-B (N, P, S)原子的形成能, 掺杂浓度9.3% Figure1. (a), (b) The adsorption energies of adsorbing metal atoms in the strongest position on pristine and single-vacancy germanene (silicene, graphene) with thedoping concentration of 3.1%; (c) the formation energy of single-vacancy germanene (silicene, graphene) doped with triple-B (N, P, S) with the doping concentration of 9.3%.
表1在本征和单空位石墨烯、硅烯、锗烯上分别以不同位置吸附Al, Ag, Cu, Ti和Au金属原子的吸附能 Table1.The adsorption energy of Al, Ag, Cu, Ti, Au adsorbed on pristine and single-vacancy graphene (silicene, germanene) with different configurations.
System ΔEf (eV)
B
N
P
S
Graphene
4.663
3.735
7.773
3.708
Silicene
7.825
0.503
–0.590
–6.759
Germanene
8.684
5.256
0.575
–6.149
表2在单空位石墨烯、硅烯、锗烯上掺杂3-B(N, P, S)原子的形成能 Table2.The formation energy of triple-B (N, P, S) doped single-vacancy graphene (silicene, germanene).
计算了单空位石墨烯、硅烯、锗烯吸附金属原子Ti, Cu, Au, Ag和Al的量子电容, 如图3(a)—(c)所示, 通过对比发现Cu吸附石墨烯的量子电容最高, Ti吸附硅烯和锗烯后, 量子电容显著提升. 同时, 还计算了单空位石墨烯、硅烯和锗烯掺杂3-B (N, P, S)的量子电容, 通过对比, 发现3-N掺杂单空位石墨烯的量子电容最高, 如图3(d)—(f)所示. 图 3 (a)?(c) 单空位石墨烯(硅烯, 锗烯)吸附Ti (Cu, Au, Ag, Al)和(d)?(f) 3-B (P, N, S)掺杂单空位石墨烯(硅烯, 锗烯)量子电容最大值的变化趋势图 Figure3. (a)?(c) Change trend chart of the maximum value of CQ for Ti (Cu, Au, Ag and Al) adsorbed single-vacancy grapheme (silicene, germanene), and (d)?(f) 3-B (P, N, S)-doped single-vacancy grapheme (silicene, germanene).
在单空位石墨烯(硅烯, 锗烯)分别吸附Ti, Au, Ag, Cu, Al体系中, 拟合了其中最高的量子电容与电势的关系图, 分别为Cu吸附单空位石墨烯和Ti吸附单空位硅烯和锗烯, 量子电容分别为87.08 μF/cm2, 79.84 μF/cm2和76.54 μF/cm2, 如图4(a)所示. 分析量子电容提高的原因, 以Ti吸附单空位硅烯为例, 从图5(a) Ti掺杂单空位硅烯浓度的态密度(DOS)和局域态密度(LDOS)图可看出, Ti的吸附导致硅烯费米能级附近引入局域态, 导致硅烯能带发生劈裂, Ti的3d轨道导致态密度自旋向上和自旋向下态之间的对称性在费米能级附近被破坏, Ti的3d轨道的能级与局域缺陷态的能级比较匹配. 从Ti吸附单空位硅烯, 我们可看出, 量子电容得到了提高归因于费米能级附近局域态的形成. 图 4 (a) 单空位石墨烯(硅烯, 锗烯)吸附Ti, Au, Ag, Cu, Al体系中, 最高的量子电容与电势的关系图, 掺杂浓度为3.1%; (b) 单空位石墨烯(硅烯, 锗烯)掺杂三个B, N, P, S原子体系中, 最高的量子电容-电势关系图, 掺杂浓度为9.3% Figure4. (a) Under the condition of doping concentration of 3.1%, the calculated quantum capacitance of single-vacancy grapheme (silicene, germanene) adsorbed withTi, Au, Ag, Cu, Al with the best properties, as a function of local electrode potential (Φ); (b) CQ of single-vacancy germanene (silicene, graphene) doping with triple-B (N, P, S)with the best properties, under the condition of doping concentration of 9.3%.
图 5 (a) Ti掺杂单空位硅烯浓度的态密度(DOS)和局域态密度(LDOS)图, 掺杂浓度为3.1%; (b) 3-N原子掺杂单空位石墨烯的态密度(DOS)和局域态密度(LDOS)图, 掺杂浓度为9.4% Figure5. Density of states (DOS) and local density of states (LDOS) of adsorbed Ti atoms on single-vacancy silicene with Ti concentration3.1%, and (b) triple N-doping single-vacancy grapheme with N concentration 9.4%.
单空位石墨烯(硅烯, 锗烯)分别掺杂三个B, N, P, S原子体系中, 最高的量子电容-电势关系图, 分别为3-B掺杂单空位硅烯, 3-N掺杂单空位石墨烯、锗烯. 其中3-N掺杂单空位石墨烯量子电容最高, 达118.42 μF/cm2 (0.21 V), 如图4(b)所示, 分析此体系量子电容提升的原因, 从态密度(DOS)和局域态密度(LDOS)图5(b)中可看出, 由于三个相邻的N原子的耦合, N原子的孤对电子态被破坏, N原子的贡献导致费米能级附近形成了局域电子态, 从而导致量子电容的提高. 采取调整石墨烯超胞中C原子与3-N + 空位比例的方法来改变N掺杂的浓度. 根据模型图1(c)可知, 掺杂的N原子两两相邻. N原子之间发生的耦合会促使孤对电子态被破坏, 局域电子态于费米能级附近形成, 提高了量子电容. 当N原子的掺杂浓度为1.85%时, 量子电容的最大值为47.38 μF/cm2; 当掺杂浓度增加到16.7%时, 量子电容增加到142.8 μF/cm2. 由图6(a)可知, 量子电容的增加是由于小电势范围内局域电子态的形成. 图6(b)为石墨烯掺杂N原子的不同浓度的表面电荷密度-电势关系图. 由图6可知, 在正电势下电荷密度明显提高. 我们也研究了3-N掺杂单空位硅烯的浓度效应, 如图6(c)所示, 量子电容的局部最小值对应的电势随着N掺杂浓度的增加移动了约0.3—0.5 V. 当N掺杂浓度为4.2%时, 量子电容的最大值为15.94 μF/cm2; 当浓度增加到37.5%, 零电势附近的量子电容也增至58.68 μF/cm2. 这是由于在小电势范围内, 费米能级的下移和附近的能带重组促使了量子电容的提升. 图6(d)代表不同浓度的硅烯掺杂N原子的表面电荷密度-电势的关系图, 可看出正电势下电荷密度明显增强. 图6(e)和图6(f)分别为单空位锗烯掺杂3个N原子的关系图, 随着浓度从6%增加到37.5%, 量子电容的极大值分别从58.7 μF/cm2 (0.144 V)增加到168.3 μF/cm2 (0.408 V). 显然, 局域态导致了低电势下量子电容的增加. N掺杂在正电势下整体电荷积累效果最佳. 图 6 (a)?(f)不同掺杂浓度的单空位石墨烯(硅烯, 锗烯)掺杂三个N原子的量子电容以及表面电荷密度-电势的关系图 Figure6. (a)?(f)Calculated quantum capacitance and surface charge vs. potential drop of 3 N-doping single-vacancy grapheme (silicene, germanene) with different concentration, as a function of local electrode potential (Φ).
通过对比图3, 发现3-N掺杂单空位石墨烯的量子电容最高, 因此选择3-N掺杂单空位石墨烯电极材料做进一步的研究, 如图7所示. 3-N掺杂单空位石墨烯和本征石墨烯的总界面电容CT与CQ和CD之间存在这样一个关系, 1/CT = 1/CQ + 1/CD, 通过在1 M NaCl的水溶液中利用经典分子动力学模拟计算获得了双电层电容CD[20], 通过上面的串联公式拟合出CT, 得到了CT与电势的关系图, 与CT曲线相对比, 本征石墨烯的CT曲线是U字形. 而3-N掺杂单空位石墨烯的CT曲线高于本征石墨烯, 很明显这归因于CQ的提高. CD对CT的贡献随着电势升高变得更加明显, 同时还发现在近期许多实验中也论证了在类石墨电极超级电容器中存在U型的CT曲线. 因为碳基电极材料的电子结构和浓度影响着CQ和CD在不同特定情况下会发生改变的特性, 比如其波峰波谷位置、最大值、最小值以及曲率等, 但这不影响我们的理论模拟计算结果的变化趋势与实验结果保持一致. 图 7 本征石墨烯和石墨烯掺杂3-N原子的总界面电容, 双电层电容以及量子电容. 双电层电容是根据经典分子动力学模拟获得, 模拟条件为1 M NaCl水性电解液[20] Figure7. The capacitance of triple-N doped with graphene and pristine grapheme, including quantum capacitance (CQ), electric double-layer capacitance (CD) and total interfacial capacitance(CT).The CD is obtained by classical MD simulation under the condition of 1 M NaCl aqueous electrolyte[20].