A Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission based on crystal orientation optimization and Sn alloying technology
1.State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, Shenzhen 518172, China 2.Beijing Microelectronics Technology Institute, Beijing 100076, China 3.School of Microelectronics, Xidian University, Xi’an 710071, China
Fund Project:Project supported by the National 111 Center (Grant No. B12026)
Received Date:10 October 2020
Accepted Date:03 February 2021
Available Online:06 May 2021
Published Online:20 May 2021
Abstract:With the development of modern communication technology, unlimited energy harvesting technology has become more and more popular. Among them, the weak energy density wireless energy harvesting technology has broken through the limitations in traditional transmission lines and can use the “waste” energy in the environment, which has become very popular. The Schottky diode is the core device of the 2.45 G weak energy density wireless energy harvesting system, and its performance determines the upper limit of the system's rectification efficiency. From the material design point of view, using crystal orientation optimization technology and Sn alloying technology, we propose and design a Ge-based compound semiconductor with large effective mass, large affinity, and high electron mobility. On this basis, the device simulation tool is further used to set reasonable device material physical parameters and geometric structure parameters, and a Ge-based Schottky diode for 2.45 G weak energy microwave wireless energy transmission is realized. The simulation of the ADS rectifier circuit based on the SPICE model of the device shows that comparing with the conventional Schottky diode, the turn-on voltage of the device is reduced by about 0.1 V, the zero-bias capacitance is reduced by 6 fF, and the reverse saturation current is also significantly increased. At the same time, the designed new Ge-based Schottky diode is used as the core rectifier device to simulate the rectifier circuit. The results show that the new-style Ge-based Schottky diode is in the weak energy working area with input energy in a range of –10 — –20 dBm. The energy conversion efficiency is increased by about 10%. The technical solutions and relevant conclusions of this article can provide a useful reference for solving the problem of low rectification efficiency of the 2.45 G weak energy density wireless energy harvesting system. Keywords:weak energy wireless transmission/ Schottky diode/ germanium-tin/ crystal orientation/ rectification efficiency
3.新型SBD器件设计与结果分析在上节材料设计的基础上, 提出一种新型的SBD器件, 其材料物理参数与几何结构参数如图5(a)所示, 图5(b)为对比器件, 即传统Ge SBD器件剖面示意图. 图 5 (a) 新型SBD器件剖面示意图含层结构材料物理参数和几何结构参数; (b)传统SBD Figure5. (a) The cross-sectional schematic diagram of the new SBD device contains the physical parameters and geometric structure parameters of the layered structure material; (b) the traditional SBD.
肖特基结采用金属W, 欧姆结采用金属Al, 且阴极设置于在n+ DR-GeSn层, 能够避免n+ DR-GeSn与Si衬底之间界面差致器件性能退化的问题; 轻掺杂n–区域, 包括$ \left\langle {100} \right\rangle $ Ge帽层, 掺杂浓度为3 × 1017 cm–3; 重掺杂n+区域掺杂浓度为1 × 1020 cm–3. 此外, 为降低器件工艺成本, 该器件拟在Si衬底上制备实现. 为此, 采用两步法(低温LT+高温HT)工艺, 先制备高质量Ge缓冲层. 然后, 利用减压化学气相沉积(reduced pressure chemical vapour deposition, RPCVD)制备出DR-GeSn外延层. 图6为Silvaco软件器件仿真结构和网格设置图, 这里要补充说明两点: 1) 考虑器件软件仿真收敛效率, 仿真结构中去掉了Si衬底和Ge缓冲层, 但不会影响仿真结果; 2) 网格设置过程中, Ge帽层与n– GeSn层之间、n– GeSn层与n+ GeSn层之间网格相对于其他区域更加密集, 以保证仿真结果收敛. 图 6 新型SBD器件Silvaco仿真结构和网格设置截图 Figure6. A screenshot of the Silvaco simulation structure and grid settings of the new SBD device.
从有效质量和亲和能两个材料物理指标设计出发, 提出引入$ \left\langle {100} \right\rangle $晶向Ge半导体与金属W形成SBD肖特基接触, 可以有效地降低SBD开启电压. 但在具体的器件设计过程中, $ \left\langle {100} \right\rangle $晶向Ge半导体帽层需要多厚需要利用Silvaco工具予以仿真确定. 图7为不同厚度$ \left\langle {100} \right\rangle $晶向Ge半导体帽层新型SBD器件正向伏安特性曲线, 由图7可见, 以1 mA电流对应为器件开启电压, 当Ge帽层的厚度为0.1 μm时, 器件的开启电压最小, 比其他帽层厚度器件的开启电压降低约0.1 V. 因此, 依据优化结果, 所设计新型SBD器件$ \left\langle {100} \right\rangle $晶向Ge帽层厚度确定为0.1 μm. 图 7 不同厚度$\left\langle {100} \right\rangle $晶向Ge帽层新型SBD器件正向伏安特性曲线 Figure7. Forward V-J characteristic curve of new SBD device with different thickness $\left\langle {100} \right\rangle $ crystal orientation Ge cap layer.
如前所述, 带Ge帽层新型GeSn SBD低开启电压、非线性优异主要源于大有效质量、大亲和能、高迁移率的复合材料设计, 符合前期设计预想. 电容特性方面, 由图8(b)可见, 相对于传统Ge基SBD器件, 带Ge帽层新型GeSn SBD电容有一定程度降低, 这有利于后续对2.45 G弱能量密度RF信号整流效率的提升[21,22]. 依据器件物理相关知识, SBD电容与材料亲和能等物理参数相关, 其下降的原因也主要是因为新型复合材料的引入所致. 图9为带Ge帽层新型GeSn SBD的器件击穿特性仿真结果, 由图可见, 当所施加电压达到约11.4 V时, 器件会发生反向击穿, 反向饱和电流的增大导致器件更容易被击穿, 但是击穿电压的变化在后续仿真中对弱能量密度区域的整流效率影响并不大. 图 9 新型Ge基SBD器件击穿特性仿真结果 Figure9. Simulation results of the breakdown characteristics of the new Ge-based SBD device.
将所设计的带Ge帽层新型GeSn SBD、传统Ge SBD以及GeSn SBD正向伏安特性曲线、反向伏安特性曲线以及在2.45 GHz频率下的电容特性曲线带入Cadance Model Editor软件中, 提取器件的SPICE参数如表1所列.
参数
$ {B}_{v}/ $V
$ {C}_{j0} $/fF
$ {E}_{\rm{G}} $/eV
$ {I}_{\rm{S}} $/A
N
$ {R}_{\rm{S}} $/${\Omega }$
M
Ge
18.9
36
0.69
9.6235 × 10–11
0.999
2.9
0.5072
GeSn
19
36.2
0.69
9.628 × 10–11
0.999
2.8
0.5073
Ge_on_GeSn
11.4
30
0.69
1.0437 × 10–8
1.106
11.6
0.4037
表1三种Ge基SBD器件SPICE参数表 Table1.SPICE parameter table of three Ge-based SBD devices.
将所设计的肖特基二极管SPICE参数带入ADS仿真软件中, 采用图10所示仿真电路, 使用阻抗自匹配模型, 对整流电路进行优化. 图 10 新型Ge基SBD器件整流测试电路 Figure10. New Ge-based SBD device rectification test circuit.
图11为仿真结果, 将电路匹配在–10 dBm附近, 匹配结果良好. 在输入能量为–10 dBm时, 能量转换效率达到了35.1%; 在输入能量为–20 dBm时, 能量转换效率达到了7.7%. 与传统Ge肖特基二极管相比, 该新型Ge基肖特基二极管在输入能量为–10 — –20 dBm的弱能量工作区域, 能量转换效率整体提升约10%. 图 11 整流电路的仿真结果, 输入能量与 (a)阻抗实部、(b)阻抗虚部、(c)整流效率以及(d)弱能量区域整流效率的关系 Figure11. Simulation results of the rectifier circuit, the relationship between the input energy and (a) the real part of the impedance (b) the imaginary part of the impedance (c) the rectification efficiency (d) the rectification efficiency in the weak energy region.