Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2018YFA0404202) and the National Natural Science Foundation of China (Grant No. 11947404)
Received Date:09 October 2020
Accepted Date:23 December 2020
Available Online:08 May 2021
Published Online:20 May 2021
Abstract:The ground level enhancement (GLE) event energy spectrum provides important information about the acceleration and propagation of cosmic ray. In this paper, we analyze the proton flux peak energy spectrum of recent GLE event (2017.09 GLE72) by using GOES15 satellite and neutron monitor experiment data. The method of adjacent averaging smoothing and weighted average are applied to study GOES15 satellite data, and obtain the flux peak and flux peak time. By fitting, the energy spectrum index of proton flux peak is 1.88 in the satellite observation energy range. Again, the energy spectrum index of the neutron monitor observation energy range, 4.86, is obtained by using the new neutron monitor yield function. It can be seen that the peak energy spectrum index given by satellites in the lower energy range (5–433 MeV) is much smaller than that given by the neutron monitor in the higher energy range (0.44–19 GeV). This means that, the energy spectrum in the lower energy range is harder than that in the higher energy range. Hence, the results of the energy spectrum could be explained qualitatively by the re-acceleration mechanism of high energy solar particles. In the low corona region, first, the particles released by the solar flare are accelerated, and the energy spectrum index of the high-energy range is twice that of the low-energy range. Then part of the solar high energy particles from the low corona enter into the CME, where they will be re-acceleration by the shock wave. The GLE72 event high energy range energy spectrum index given by the neutron monitor experiment is 4.86, so the energy spectrum index in low energy range should be 4.86/2 = 2.43. However, the low energy range energy spectrum index is 1.88 (lower than 2.43 in low energy range). The reason may be that the energy spectrum index is further reduced due to the re-acceleration effect in the shock wave generated by the CME. The observation of GLE event is one of the main research subjects of the Large High Altitude Air Shower Observatory (LHAASO). Also, the GLE72 proton peak energy spectrum results provide important information to observe solar high energy particles in the LHAASO experiment. Keywords:solar cosmic rays/ energy spectrum/ GLE event
全文HTML
--> --> --> -->
2.1.GOES15卫星数据处理
太阳活动爆发所释放的大量高能粒子经过行星际空间传播到1 AU时, 这些太阳高能粒子会被地球轨道上的卫星(如GOES, ACE, STEREO和SAMPEX等)观测到, 本文主要利用GOES15卫星观测数据来分析GLE72事件. GOES15 卫星由NOAA和NASA研发、发射和运行, 对高能粒子探测的仪器主要是HEPAD和EPEAD, 探测质子的能量范围为2—700 MeV. 图3为2017年9月9—14日GOES15卫星EPEAD仪器观测的6个能量通道(6.5, 11.6, 30.6, 63.1, 165, 433 MeV)的质子流强随时间的变化. 图中横坐标1指2017年9月10日15:35 UT, 也就是X8.2级太阳耀斑爆发时刻. 可以看到, 各能量质子流强随时间变化都有一个快速上升和缓慢恢复的过程, 有着复杂的结构. 我们对观测各能量质子流强进行了数学平滑, 平滑结果如图3中的红色曲线所示. 由平滑曲线可以给出流强峰值$ I(E) $, 利用加权平均法给出流强峰值时间$ t_{\max} $. 流强峰值时间随能量的变化如图4 所示. 图中纵坐标为峰值时间, 1表示X8.2 级耀斑爆发时刻. 由图4可以看到, 流强达到峰值的时间大致表现为随能量的增大而减小, 即更高能量的太阳宇宙线粒子更早到达观测卫星处, 这可能与不同能量的粒子在行星际空间的传播速度不同有关. 各能量通道(6.5, 11.6, 30.6, 63.1,165, 433 MeV)的流强峰值分别为(268 ± 37), (69.7 ± 7.6), (32.3 ± 2.4), (4.97 ± 0.14), (0.45 ± 0.04), (0.13 ± 0.01) (cm–2·s–1·sr–1·MeV–1), 如图5所示. 考虑各测量点误差, 拟合得到质子峰值能谱为$I(E) = (1.05\; \pm $$ 0.63)\!\times\!10^{4}E^{-1.88\pm0.14}\; ({\rm{cm}}^{-2}·{\rm{s}}^{-1}·{\rm{sr}}^{-1}·{\rm{MeV}}^{-1})$. 图 3 GOES15卫星的EPEAD-A仪器测量的6个粒子能量通道(6.5, 11.6, 30.6, 63.1, 165, 433 MeV)的质子的流强随时间变化(黑色), 红色为平滑结果 Figure3. Profile of the time of proton flux (black) in the six channels (6.5, 11.6, 30.6, 63.1 165, 433 MeV). The red line is the result obtained by Smoothing.
图 4 各能量点峰值时间随能量的变化. 其中纵坐标1表示2017年9月10日15:35 UT耀斑爆发的时刻(黑色实线). 下三角为加权平均法得到的GOES15卫星各能量点流强到达峰值的时刻, 红色实线为下三角数据点拟合结果 Figure4. Peak time as a function of the energy. The black solid line indicates the X8.2 flare at 15:35 UT on September 10, 2017. The lower triangle refers to the time of flux peak in different energies, which is obtained by the weighted average method. The red solid line is the fitting result.
图 5 各能量点流强峰值随能量的变化. 黑正方形为平滑得到的GOES15卫星各能量点的流强峰值, 红色实线为黑正方形数据点(带有误差)拟合结果 Figure5. Flux peak as a function of energy. The black square refers to flux peak in different energies obtained by Smoothing. The red solid line is the fitting result (with error).