Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61674126, 51532007, 61721005)
Received Date:29 October 2020
Accepted Date:02 March 2021
Available Online:20 April 2021
Published Online:05 May 2021
Abstract:Czochralski (CZ) silicon is a base material for manufacturing integrated circuits (ICs). The mechanical strength of CZ silicon determines the processing limitations and often dominates the issues related to packaging and failure of ICs. With the ever-smaller feature size of ICs, the scaling of device dimensions may indirectly lead to increase the stress in silicon substrate, thus increasing the probability of generating dislocations. Consequently, improving the mechanical strength of CZ silicon is of significance for increasing the manufacturing yield of ICs. In this work, we propose a strategy of co-doping germanium (Ge) impurity and nitrogen (N) impurity into CZ silicon to achieve better mechanical strength. In order to explore the feasibility of such a strategy, we comparatively investigate the room-temperature hardness and dislocation gliding behaviors in the temperature range of 600–1200 ℃ in the conventional CZ silicon, Ge-doped CZ silicon, N-doped CZ silicon, as well as N and Ge co-doped CZ silicon. The significant experimental results are described as follows. 1) Ge-doping, N-doping or co-doping of Ge and N hardly influences the hardness and therefore the dislocation gliding behavior at room temperature. 2) The suppressing effect of N-doping on the dislocation gliding is remarkable at 600–1000 ℃ and becomes weakened at the temperatures higher than 1100 ℃, while Ge-doping hardly affects the dislocation gliding at 600–900 ℃ but exhibits a strong suppressing effect on the dislocation gliding at 1000–1200 ℃. 3) Co-doping Ge and N impurities into CZ silicon can take the complementary advantages of both Ge- and N-doping to suppress the dislocation gliding at 600–1200 ℃. It is believed that N-doping can result in the formation of N-O complex-related pinning agents within the dislocation cores to suppress the dislocation gliding at 600–1000 ℃. For Ge-doping, it is supposed that Ge-O complexes acting as the pinning agents can form near the front of a single dislocation when the temperature is as high as 1000 ℃ and above. In a word, it is verified in this work that co-doping Ge and N into CZ silicon can further improve the mechanical strength at the processing temperatures of ICs fabrication. Keywords:Czochralski slicon/ mechanical strength/ dislocation gliding/ co-doping/ germanium/ nitrogen
图1(a)给出了4种样品经纳米压痕测试所得的一组典型载荷-位移(P-h)曲线. 可以看到, CZ, GCZ, NCZ和GNCZ样品的P-h曲线几乎是相同的. 各样品的P-h曲线均出现了加载突进(pop-in)和卸载突退(pop-out)的特征, 如图1(b)所示. 其中, 加载段曲线中显著的pop-in是由Si-I相转变为亚稳的Si-II相引起的, 而轻微的pop-in则被认为与加载过程中位错滑移系的开动有关[22]. Pop-out则由Si-II 相进一步转变为Si-III/Si-XII相引起[23], 图1(a)中的pop-out还带有扭结型(kink)特征, 这与部分Si-II 相在卸载过程中转变为非晶α-Si相有关[24]. 以往的透射电子显微镜观察证实: 在纳米压痕下方不仅存在上述几种硅亚稳相, 而且在相变区域的下方存在含有高密度滑移位错的塑性变形区[25,26]. 本工作所采用的载荷较大(约500 mN), 因此压痕下方的塑性变形应该是显著的. 图1中各样品的P-h曲线均存在很相似的pop-in和pop-out的特征, 因此可以认为各样品中形成的亚稳相几乎不存在差异, 它们对基体塑性变形的影响可视为相同. 值得注意的是, 4种样品的压针位移随载荷的变化行为几乎相同, 意味着它们的相变和塑性变形的行为几乎相同. 总之, 上述结果表明: 单一的锗掺杂或氮掺杂以及锗和氮两种杂质的共掺几乎不会对CZ硅片在室温纳米压痕过程中的相变和位错滑移产生影响. 图 1 (a) CZ, GCZ, NCZ, GNCZ硅单晶样品的典型纳米压痕载荷-位移(P-h)曲线; (b)各样品带有相变特征的部分载荷-位移曲线(为了可视起见, 各曲线作了平移) Figure1. (a) Representative P-h curves of CZ, GCZ, NCZ, GNCZ silicon specimens under nanoindentation; (b) segments of the P-h curves with features of phase transformation for CZ, GCZ, NCZ, GNCZ silicon specimens (the curves are deliberately shifted for visual discrimination).
对图1中所示的P-h曲线中的卸载段进行幂函数拟合可得样品的纳米压痕硬度值[27]. 图2给出了各样品的纳米压痕硬度的平均值及其标准差. 这里需要说明的是, 对每个样品而言, 从5条P-h曲线中的卸载段拟合推导出5个纳米压痕硬度值, 然后作统计分析. 从图2可以看到, GCZ样品的硬度值最低, 为10.98 GPa; GNCZ样品的硬度值最高, 为11.34 GPa, 但仅比GCZ样品的大3.3%. 考虑到纳米压痕测试的系统误差和偶然误差, 上述差异被认为可以忽略. 进一步地, 对各样品进行了维氏硬度的测试, 在每个样品上施加50个维氏压痕, 得到相应的维氏硬度. 图2(b)为各样品的维氏硬度平均值及其标准差. 可以看出, GNCZ样品的硬度值为11.41 GPa, 仅比CZ样品的11.17 GPa大2.1%, 这样的差异在测量的误差范围之内. 需要指出的是, 维氏硬度的计算是基于压痕卸载后经弹性恢复后的残余变形量, 而纳米压痕硬度的计算则是基于玻氏压针在最大压载深度处的变形量, 这可能是导致维氏硬度比纳米压痕硬度稍大的原因. 总之, 纳米压痕硬度和维氏硬度的测试结果表明: 单一的锗掺杂或氮掺杂以及锗和氮两种杂质的共掺对直拉硅片的常温机械强度几乎没有影响. 图 2 CZ, GCZ, NCZ, GNCZ硅样品(a) 纳米压痕硬度和(b)维氏硬度的平均值及其标准差 Figure2. Average values and standard deviations of the (a) nanoindentation hardness and (b) Vikers hardness of CZ, GCZ, NCZ and GNCZ silicon specimens.
23.2.三点弯曲加载下的位错滑移 -->
3.2.三点弯曲加载下的位错滑移
考察了带有划痕的CZ, GCZ, NCZ和GNCZ样品在600, 650, 700和750 ℃施加三点弯曲时的位错滑移行为. 在三点弯曲加载状态下, 位错从划痕损伤处产生, 继而在硅片近表面区域沿着$ \left\langle {110} \right\rangle$方向滑移. 在一定载荷下, 三点弯曲使样品表面所受的应力从两外侧刃口到内侧刃口呈线性分布, 从而造成位错滑移距离从外侧刃口到内侧刃口逐渐增大. 图3(a)给出了三点弯曲加载单元的结构示意图以及加载时的载荷-位置分布关系. 三点弯曲加载的分切应力-位置的定量关系可以表示为 图 3 (a) 三点弯曲加载单元的结构示意图以及加载时的载荷-位置分布关系的示意图; (b) 普通CZ硅样品在650 ℃三点弯曲加载25 min并经择优腐蚀后某一部分区域的OM照片 Figure3. (a) Schematic diagram of three-point bending unit and the dependence of load on the position under a given loading; (b) regional OM image of the conventional CZ silicon specimen subjected to three-point bending at 650 ℃ for 25 min and subsequent preferential etching.