1.Institute of Space Weather, Nanjing University of Information Science and Technology, Nanjing 210044, China 2.Binjiang College, Nanjing University of Information Science and Technology, Nanjing 210044, China 3.Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, Nanjing 210008, China 4.Guangxi Meteorological Center of Technology and Equipment, Nanning 530022, China
Fund Project:Project supported by the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1731105), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171456), the Specialized Research Fund for Key Laboratory of Dark Matter and Space Astronomy, Chinese Academy of Sciences, and the Science Research Project of Binjiang College, Nanjing University of Information Science and Technology, China (2020)
Received Date:29 October 2020
Accepted Date:17 December 2020
Available Online:21 April 2021
Published Online:05 May 2021
Abstract:In this paper, we investigate 273 type II radio burst events detected by Wind, STEREO spacecraft from January 2010 to March 2018 during the 24th solar cycle. We classify all events as five groups or sub-types according to their starting and ending frequencies, and then analyze the observed characteristics of each group of type II radio bursts and the correlation between the occurrence of solar energetic particle (SEP) events and the associated coronal mass ejection (CME) or type II radio bursts. What we find is as follows. 1) In each group of type II radio burst events, the CME speed (v), width (WD), mass (m), and kinetic energy (Ek) associated with SEP events are generally greater than those with no SEP events, indicating that the generation of SEP events requires a fast and wide energetic CME eruption. 2) Compared with type II radio bursts starting from the DH band, type II radio bursts starting from the metric band have a higher proportion of large SEP events. Multi-band type II radio bursts are more likely to produce SEP events than single-band events, where M-DH-KM type II bursts have the highest proportion of SEP events (73%), and the DH IIs only have the lowest one (19%). 3) In each kind of type II radio bursts, the type IIs with SEP events usually have higher starting frequencies (lower shock forming heights), lower ending frequencies (higher ending heights) and longer durations than those with no SEP events; coronal shock waves that are easy to produce SEP events (especially large SEP events) generally begin to form at a lower height (such as < 3Rs, Rs: solar radius), and are sustained to a much larger height (such as > 30Rs). 4) There exists a strong negative correlation between the duration and the ending frequency of type II radio burst (cc = –0.93). The proportion of SEP events increases with the increase of the duration of type II radio burst, and decreases with the increase of the ending frequency, which largely depends on the CME speed and other properties. The results of this paper further show that the generation of SEP events is greatly related to the sub-types and characteristics of type II radio bursts. The higher the starting frequencies and the lower the ending frequencies of type II radio bursts, such as M-DH-KM type II bursts, of which the CME drives to forming shock waves at a very low height and propagates to a very large height, the longer the duration of the shock, the longer the time it takes to accelerate the particles, and the greater the probability of SEP events (especially large SEP events) is. Keywords:type II radio burst/ solar energetic particles/ coronal mass ejection/ coronal shock
表2耀斑特征时间统计表 Table2.Characteristic times of associated solar flares.
23.3.II型射电暴特征 -->
3.3.II型射电暴特征
33.3.1.起始/结束频率 -->
3.3.1.起始/结束频率
图3(a)为五类II型射电暴起始频率分布, 黑色空心圈为每个II型射电暴事件的起始频率; 图3(b)—(f)为II型射电暴起始频率统计直方图, 红色为SEP事件, 蓝色为无SEP事件. 从图3(a)可以看出, 在五类II型射电暴中, 开始于米波段的射电暴起始频率呈现M IIs only > M-DH-KM IIs > M-DH IIs, 开始于DH波段的事件起始频率基本呈现DH IIs only > DH-KM IIs. 对比图3(b)—(f)可以看出, 对于伴随SEP事件或无SEP事件的II型射电暴, 除呈现类似图3(a)中总体规律外, 还显示有SEP事件的射电暴起始频率均明显高于无SEP事件的, 表明同类II型射电暴中有SEP产生的事件具有更高的起始频率, 即起始频率高的II型射电暴更容易产生SEP事件. 图 3 (a) II型射电暴起始频率分布; (b)?(f) 五类II型射电暴起始频率统计直方图(G1?G5) Figure3. (a) Starting frequency distribution of type II radio bursts; (b)?(f) histogram of the starting frequencies of type II radio bursts for five groups (G1?G5).
图4(a)为五类II型射电暴的结束频率分布, 黑色空心圈为每个II型射电暴事件的结束频率; 图4(b)—(f)为II型射电暴结束频率统计直方图, 红色为SEP事件, 蓝色为无SEP事件. 由图4(a)中的结束频率可清晰辨别各类II型射电暴的结束频段, 与本文的分类一致, M IIs only结束频率最高 (均值57 (中值52), 其次是M-DH IIs和DH IIs only, DH IIs略低, 最后是DH-KM IIs和M-DH-KM IIs, M-DH-KM IIs最低(0.25 (0.2)). 图4(b)—(f)显示, 总体上有SEP事件伴随的II型射电暴结束频率比无SEP事件的略低, 但同一类型II型射电暴差距不大. 图 4 (a) II型射电暴结束频率分布; (b)?(f) 五类II型射电暴结束频率统计直方图(G1?G5) Figure4. (a) Ending frequency distribution of type II radio bursts; (b)?(f) histogram of the ending frequencies of type II radio bursts for five groups (G1?G5).
图5(a)为五类II型射电暴的持续时间分布, 黑色空心圈为每个II型射电暴事件的持续时间; 图5(b)—(f)为II型射电暴持续时间的统计直方图, 红色为有SEP事件, 蓝色为无SEP事件. 从图5(a)可以清晰地看出, 五类II型射电暴中, 持续时间最短的为M IIs only, 最长的是M-DH-KM IIs, G1—G5依次增加, M IIs only (均值8.9/中值8) < DH IIs only (29/21) < M-DH IIs (46/39) < DH-KM IIs (402/239) < M-DH-KM IIs (663/507). 图5(b)—(f)显示, 比较有无SEP两类事件, 可以发现每种II型射电暴中有SEP事件伴随发生的II型射电暴持续时间均普遍大于无SEP事件的, 即伴随SEP事件的II型射电暴具有更长的持续时间. 特别地, G1, G2和G3三类II型射电暴持续时间基本都在1 h以内, 而G4和G5两类事件的持续时间普遍长达数小时, 甚至十几个小时(如M-DH-KM IIs中伴随SEP事件的). 图 5 (a) II型射电暴持续时间分布; (b)?(f) 五类II型射电暴持续时间统计直方图(G1?G5) Figure5. (a) Duration distribution of type II radio bursts; (b)?(f) histogram of the durations of type II radio burst for five groups (G1?G5).
图6(a)—(e)显示了II型射电暴持续时间与结束频率的关系, 空心圆为有SEP事件, 实心圆为无SEP事件, 图中的黑色虚线为II型射电暴持续时间与结束频率的拟合直线. 由图6可以看出, II型射电暴持续时间与结束频率间具有很强的负相关, 相关系数达–0.93, 即II型射电暴结束频率越低, 持续时间越长, 反之越短, 其中有SEP事件伴随的事件相关系数达–0.96, 而无SEP伴随的事件相关系数略低, 为–0.89. 比较II型射电暴对应的CME参数分布可明显看出, 射电暴结束频率较高、持续时间较短的事件通常具有较小的CME速度、角宽、质量和动能, 而结束频率低、持续时间长的事件的这些参数通常较大. CME的加速度对射电暴的持续时间和结束频率无明显影响. 图6中分布表明, 如果II型射电暴的持续时间足够长并一直持续很低的频率, 其对应的CME必须要有足够的能量才能驱动激波并维持很长时间. 图 6 (a)?(e) II型射电暴持续时间与结束频率关系; (f), (g) 持续时间和结束频率各区间SEP事件百分比 Figure6. (a)?(e) Relationship between duration and ending frequency of type II radio bursts; (f), (g) percentage of SEP events in each interval of duration and ending frequency.
本文假定II型射电暴产生高度近似等于CME的前沿高度[38]. 图7为五类II型射电暴起始高度统计直方图, 红色为SEP事件, 蓝色为无SEP事件, 红色和蓝色数字代表SEP和无SEP事件起始高度的均值(中值). 由图7(a)可知, II型射电暴的起始高度主要分布在4Rs (Rs表示太阳半径)以下, 伴随SEP事件的起始高度小于不产生SEP的事件(2.7Rs < 3.3Rs). 若考虑II型射电暴起始时刻激波与CME前沿的脱体距离(约0.4Rs)[39,41], 这一结果与II型射电暴起始时刻激波高度在3Rs—4.5Rs的结果基本一致. 但有无SEP事件的分布基本无明显差别, 也就是说, 能否产生SEP事件不仅仅取决于激波产生的高度(II型射电暴起始高度), 还受其他因素影响, 如可被加速的粒子数量、粒子向外传播的磁场条件等. 除M IIs only外, 有SEP事件伴随的II型射电暴起始高度均值明显低于不产生SEP事件的. 此外, 起始于米波段的II型射电暴起始高度主要分布在3Rs以下, 而起始于DH波段的II型射电暴起始高度普遍介于3Rs—12Rs. 图 7 II型射电暴起始高度的统计直方图 Figure7. Histogram of the starting heights of the different group of type II radio bursts.
图8为II型射电暴结束高度的统计直方图, 红色代表有SEP事件, 蓝色代表无SEP事件. 从图8(a)可以看出, 所有事件中伴随SEP事件的II型射电暴结束高度显著大于无SEP事件(均值49 > 13)的, 且射电结束高度越高, 其伴随SEP事件产生的比例越高. 从图8(b)—(f)可以看出, 除DH IIs only以外, 其余四类伴随SEP事件的II型射电暴结束高度普遍大于不产生SEP事件的. G1, G2和G3中的II型射电暴结束高度普遍在10Rs以下, 而G4和G5中的II型射电暴结束高度绝大部分都超过10Rs, 特别地, M-DH-KM IIs中伴随SEP事件的结束高度均值达94Rs. 图 8 II型射电暴结束高度的统计直方图 Figure8. Histogram of the ending heights of the different group of type II radio bursts.