Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11675039, 12075049) and the Fundamental Research Funds for the Central Universities (Grant Nos. DUT18TD06, DUT20LAB201)
Received Date:16 October 2020
Accepted Date:17 November 2020
Available Online:29 March 2021
Published Online:05 April 2021
Abstract:Micro-beam radio-frequency (RF) capacitive discharges have been widely used in the plasma enhanced chemical vapor deposition of nanocrystalline particles such as nano silicon crystal. However, the plasma column shrinks radially at a sufficiently high gas pressures as manifested by their glow not entirely filling the radial cross-section of the discharge tube. This greatly limits the dissociation rate of gas in plasma. In order to obtain the information about the plasma column varying with gas pressure, the formation of different gas discharge mode under different pressure is discussed. In this paper the spatial characteristics of micro-beam RF capacitive discharges are investigated by using an intensified charged-coupled device (ICCD) and a single lens reflex camera (SLR camera). Furthermore, high voltage probe and current probe are used to record the electrical characteristics of the high voltage electrode. The results indicate that in a pure argon discharge, the discharge mode evolves from a glow discharge into a filament discharge with the increase of pressure. As the pressure continues to increase, the filament is split: a single channel of plasma is split into two or more filaments at a certain gas pressure. However, the glow discharge in a mixture of 99% argon and 1% hydrogen at a low pressure is observed: the plasma spreads throughout the tube. As the pressure increases, the filament disappears, and the plasma column still can be observed in the center of quartz tube. The glow shrinks in the radial center at a moderate pressure. At a high pressure, the "annulus" glow discharge is achieved as manifested by a glow ring on the surface of the discharge tube. In addition, in pure hydrogen discharges, the discharge mode evolves from the full-space glow discharge into an "annulus" glow discharge with pressure increasing. Finally, through the interaction between the electron heating by the radio frequency electric field and heat conduction of gas, the filament discharge in a low thermal conduction gas is explained. In addition, special attention is paid to the pure argon filamentation, which is the splitting of a single channel of plasma into two or more smaller filaments as a result of the skin effect. Keywords:radio-frequency capacitively coupled micro-beam plasmas/ experimental diagnoses/ mode transition
图 5 500 V放电时, 不同气压下99%氩/1%氢混合气体等离子体的径向分布图 Figure5. Radial distributions of argon/hydrogen (99%/1%) plasmas for different pressures at 500 V.
图6和图7给出的是500 V下纯氢气微束射频放电等离子体轴向分布和径向分布的图像. 其中图6中每张图片每张图片由ICCD拍摄而成, ICCD的累计曝光时长为50 μs, 增益为200; 图7中每张图片的曝光时长依次分别为1/750, 1/350, 1/250, 1/180, 1/60, 1/45和1/30 s, 故图6和图7中每张图片累计曝光的时间远大于射频周期(16.7 ns), 因此图像显示的结果是射频周期时间平均下的等离子体空间分布形貌. 结果显示, 在低气压时, 等离子体在轴向和径向上呈现弥散分布, 此时放电是辉光放电模式; 随着气压的增加, 等离子体在轴向上逐渐收缩到两个电极之间. 当气压达到$9.5 \times {10^2}$ Pa时, 等离子体在径向上收缩到石英管壁处, 中心形成“空洞”; 而且随着气压进一步增加, 中心“空洞”越来越明显, 即放电转换到“环状”放电模式. 和混合气体放电一样, “环状”放电模式的出现主要是由射频电场的趋肤效应和氢气的高热传导率所致. 图 6 500 V放电时, 不同气压下氢气等离子体的轴向分布图 Figure6. Axial distributions of hydrogen plasmas for different pressures at 500 V.
图 7 500 V放电时, 不同气压下氢气等离子体的径向分布图 Figure7. Radial distributions of hydrogen plasmas for different pressures at 500 V.
图8—图10给出了这三种气体放电下, 流过高压电极的射频电流随气压的变化曲线. 其中图8是不同电压下, 氩气放电中射频电流随气压的变化曲线. 结果显示, 在等离子体轴向上未完全收缩到两个电极间之前, 射频电流随着气压的增加是缓慢下降的. 这主要是由于气压的增加, 电子的碰撞频率增加, 导致等离子体的电抗增加, 从而降低了射频电流. 而当等离子体收缩到两个电极之间的同时, 射频电流出现一个“台阶式”的跳跃下降. 这主要是因为在等离子体在充满两个电极之间以及地电极和扩散腔室之间时, 放电是一个三电极结构, 即高压电极与地电极之间是一个回路; 高压电极与扩散腔室(第二个地电极)之间是第二个回路. 因此当高压电极与扩散腔室之间的等离子体消失时, 射频电流少了一个回路, 从而导致射频电流跳跃下降. 图 8 不同电压下, 氩气放电中射频电流(峰峰值)随着气压的变化曲线 (a) $1 \times {10^3}$ Pa辉光放电; (b) 出现双通道丝状放电的临界点; (c) 出现三通道丝状放电的临界点; (d) 等离子体收缩在两个电极之间的临界点 Figure8. Evolution of radio-frequency current (peak-to-peak) with pressure in argon discharges for different voltages: (a) The glow discharge at $1 \times {10^3}$ Pa; (b) the occurrence of double-channel filament discharge; (c) the occurrence of three-channel filament discharge; (d) the plasma contraction between two electrodes.
图 10 不同电压下, 氢气等离子体射频电流(峰峰值)随着气压的变化曲线 (a) $1 \times {10^2}$ Pa辉光放电; (b) 等离子体收缩在两个电极间的临界点; (c) 等离子体熄灭前 Figure10. Evolution of radio-frequency current (peak-to-peak) with pressure in hydrogen discharges for different voltages: (a) The glow discharge at $1 \times {10^2}$ Pa; (b) the plasma contraction between two electrodes; (c) the plasma extinction.
图9为不同电压下, 99%氩/1%氢混合气体放电射频电流随气压的变化曲线. 结果显示, 射频电流随着气压的增加先迅速下降, 在等离子体收缩到两个电极之间后再缓慢下降; 尤其是在等离子体收缩到两个电极之间时, 射频电流出现了明显的“转折点”, 这是因为在等离子体未完全收缩到两个电极间之前, 放电依旧是三电极结构. 图10为不同电压下, 氢气放电中射频电流随气压的变化曲线. 结果显示, 随着气压的增加, 射频电流先较为迅速的下降, 然后是缓慢下降. 出现中间的转折点与混合气体放电原因一致. 对比三种气体情况, 射频电流在氩气放电中最高, 在氢气放电中最低, 这是因为氩气放电中氩原子电离碰撞截面大, 电离率更高, 即电子密度更高. 图 9 不同电压下, 99%氩/1%氢混合气体放电射频电流(峰峰值)随着气压的变化曲线 (a) $5 \times {10^2}$ Pa辉光放电; (b) 等离子体收缩在两个电极间的临界点; (c) 等离子体熄灭前 Figure9. Evolution of radio-frequency current (peak-to-peak) with pressure in argon/hydrogen (99%/1%) discharges for different voltages: (a) The glow discharge at $5 \times {10^2}$ Pa; (b) the plasma contraction between two electrodes; (c) the plasma extinction.