1.School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China 2.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China 4.CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206106), the National Natural Science Foundation of China (Grant Nos. 51772317, 91964102), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB30000000), the Shanghai “Super Postdoctor” Program, and the China Postdoctoral Science Foundation (Grant Nos. 2019T120366, 2019M651620)
Received Date:06 September 2020
Accepted Date:08 November 2020
Available Online:02 March 2021
Published Online:20 March 2021
Abstract:Hexagonal boron nitride (h-BN) is considered as an ideal substrate material for new electronic devices and nano-electromechanical (NEMS) devices, owing to its hexagonal network lattice structure and high chemical and mechanical stability. It can be used to seal gas with a long-term stability, and then has a big potential in further applications in electronics and NEMS. Recently, researchers have discovered that hydrogen atoms can penetrate multiple layers of h-BN non-destructively, forming the bubbles between layers, which can be used as NEMS devices. In this article, we investigate the effect of hydrogen plasma treatment duration on the size of h-BN bubbles. It is found that the size of bubbles becomes larger with the increase of treatment time while their distribution density decreases. It is also observed that the prepared h-BN bubbles have similar morphological characteristics, which are related to Young’s modulus of h-BN and interlayer van der Waals interaction. With the help of force-displacement curve measurement, it is obtained that the internal pressure is about 1—2 MPa for micro-sized bubbles, while the internal pressure of nano-sized bubbles can reach a value of GPa. Keywords:h-BN/ plasma treatment/ nano bubbles/ van der Waals heterostructure
全文HTML
--> --> --> 1.引 言六方氮化硼(h-BN)由六角蜂窝结构上交替排列的硼原子和氮原子构成[1]. 作为一种宽带隙半导体, h-BN具有原子级平坦的表面, 没有任何表面悬挂键及电荷[2], 这使得它常被用作二维晶体的衬底或封装材料[3]. 此外, h-BN具有极高的热稳定性和化学稳定性. 即使是在大气环境下, 单层的h-BN在800 ℃高温下依然保持稳定[4], 使得h-BN常用作抗氧化层来保护易氧化的二维材料和器件[5]. 这种抗氧化性能说明h-BN可以有效地隔绝气体分子, 可以实现对气体的封装和保存, 是极端条件下信息器件和MEMS器件的理想衬底材料[5–8]. 与石墨烯材料类似[9], h-BN具有较高的弹性且可以封装气体分子. 得益于h-BN合适的晶格常数和堆垛结构[10], 气体分子难以穿透h-BN晶格[11], 因此气体可以在被捕获后保存在h-BN气泡中. 目前, 许多二维材料(例如石墨烯[12–17]和二硫化钼[12,13,18–20]等)均被用来尝试制备纳米气泡结构. 然而, 针对这种纳米气泡结构的制备, 大部分方案还停留在将机械剥离的二维材料薄层转移到衬底过程中的小概率气体捕获方案, 气泡结构的制备具有随机性且产率不高. 此外, 相关性质研究大多集中于石墨烯等二维材料, 针对h-BN气泡结构的制备和研究较少. 最近, 作者所在课题组通过直接对h-BN片层进行氢等离子体处理, 实现了h-BN气泡的制备[21], 但h-BN纳米气泡的形貌和机械特性有待研究. 本文通过改变氢等离子体处理时间, 研究了h-BN气泡尺寸随处理时间的关系. 在气泡机械性质方面, 通过对h-BN气泡结构的原子力显微镜(AFM)测量发现气泡高度和气泡半径的比值几乎是恒定的. 理论分析发现该比值仅与h-BN材料的杨氏模量以及层间的范德瓦耳斯(vdW)相互作用有关. 为了得到h-BN纳米气泡内的气体压强, 采用了AFM的纳米压痕技术[22–27]对气泡进行力-位移曲线的测量. 分析发现气泡内部的压力与层间vdW相互作用和气泡的最大高度有关. 2.样品制备h-BN气泡的制备过程如下: 首先, h-BN由微机械剥离法解理到用氧等离子体清洗过的石英衬底上. 将带有h-BN片层的石英衬底装入配备有射频发生器的化学气相沉积反应炉中(MTI公司, 射频13.56 MHz), 功率范围为100—400 W. 样品温度可以在室温至1000 ℃范围内连续可调. 真空泵(GX100N干泵系统, Edwards)连接到化学气相沉积腔室, 以控制流速. 将样品加热到预设温度后, 设定流速为3 sccm (1 sccm = 1 mL/min)(对应气压约3 Pa)的氢气引入反应腔室, 最后打开射频等离子体源对样品进行处理. 等离子体处理时间控制在90—150 min. 在氢等离子体处理期间, 氢气分子被离子化为氢离子或原子, 这些氢离子或原子足够小且具有数个电子伏(eV)的动能, 足以无损穿过h-BN的晶格, 最后在h-BN片层表面形成氢气气泡, 这些气泡区域的h-BN通常为多层, 厚度约为6 nm[21]. 可以通过AFM (Cypher S, Asylum Research)测量得到h-BN气泡的形貌特征. 图1为氢等离子体处理后在h-BN气泡的AFM形貌图. 几乎所有气泡都具有圆形或近似圆形的基底(图1(a)). 在气泡分布较密集的区域, 气泡间距比较近. 这些气泡通常较小, 半径小于300 nm (图1(b)). 对于尺寸较大的气泡, 它们的半径可达到约600 nm (图1(c)). 图 1 h-BN气泡的典型AFM形貌图像 (a) 具有不同尺寸以及不同分布密集程度的h-BN纳米气泡形貌图像(标尺: 1 μm); (b), (c) 分别是图(a)中红色和橙色线框区域的放大AFM测量形貌图; 所有形貌图像共享右侧的标尺 Figure1. Typical AFM images of h-BN bubbles: (a) Topography of h-BN bubbles in different size and distribution density. Scale bar, 1 μm; (b), (c) AFM images taken from the red and orange box in panel (a) respectively. The scale of height sits on the right.
所有的h-BN气泡样品在大气环境中进行保存, 以探索其结构随时间的稳定性. 通过在不同时间段对相同样品区域的光学显微镜测量(补充材料的图S1 (online)), 发现制备的h-BN气泡分布随时间变化没有发生明显改变. 对同一样品区域进行不同时间段的AFM测量(补充材料的图S2 (online)), 证实气泡结构随时间展现出较高的稳定性, 其尺寸随时间变化几乎保持不变. 其次, 针对单独h-BN气泡的多次AFM测量(补充材料的图S3 (online)), 发现在AFM探针等外力作用下, h-BN气泡结构能保持稳定, 未出现明显气体泄漏或结构破损. 因此, 制备的h-BN气泡样品能够实现长期的保存, 其结构随时间变化展现出高稳定性. 3.气泡尺寸与处理时间的关系不同时间的氢等离子体处理对h-BN气泡的影响如图2所示. 分别给出了处理时间在60, 90和120 min情况下, h-BN气泡的分布情况. 图 2 氢等离子体处理不同时间后h-BN气泡分布情况 (a)?(c) 氢等离子体处理60, 90和120 min时, h-BN表面的气泡情况(标尺: 2 μm), 图(a)和图(b)中的插图分别是对应处理时间的单个气泡的AFM形貌图像, 图(a)插图的标尺为50 nm, 图(b)插图的标尺为400 nm; (d) 图(a)和图(b)的插图以及图(c)的气泡截面轮廓, 柱状图部分是在不同处理时间下气泡平均高度的统计 Figure2. Distribution of h-BN bubbles after hydrogen plasma treatment for different treatment duration. (a)?(c) AFM images of the h-BN bubbles after treated for 60, 90 and 120 min. Scale bar: 2 μm. The inserts in (a) and (b) are the AFM topography images of a single bubble corresponding to the processing time. The scale bar is 50 nm for insert in (a) and 400 nm for the insert in (b). (d) Cross-sectional profiles of bubbles in inserts of panels (a) and (b) and panel (c). The histogram part is the average bubble height under different processing times according to statistics.
4.气泡尺寸分析气泡区域的h-BN虽然为多层, 但厚度有限, 气泡尺寸以及机械性能随h-BN层数的变化呈现弱相关性[28,29], 因此可以直接通过AFM对h-BN气泡的形貌结构进行测量, 进而提取不同尺寸气泡的截面轮廓并进行分析. 图3给出了气泡尺寸相关的统计信息. 气泡的最大高度与半径的比值(${h_{\max }}/R$)统计在图3(a)中. 统计结果反映出该比值趋向于一个定值, 说明${h_{\max }}/R$与气泡半径R以及体积V都不相关(${h_{\max }}/R$的另一组统计示例可参考补充材料的图S4 (online)). 图3(a)中的插图给出了典型的h-BN纳米气泡结构. 分析不同尺寸纳米气泡的尺寸比, 并将其统计在图3(b)中, 发现不同气泡的尺寸比都分布在固定值0.092的附近, 具体气泡的尺寸比与0.092的偏差范围仅在10%以内. 图 3 气泡特征尺寸的统计分析 (a) 对不同半径气泡的尺寸比统计结果, 插图是h-BN气泡的结构示意图; (b) 具有不同尺寸比的气泡数量统计, 可以发现h-BN气泡的尺寸比集中在0.092附近, 橙色点代表气泡的尺寸比与0.092的偏差, 整体偏差值在10%范围以内(绿色区域) Figure3. Characteristic analysis of bubbles. (a) Statistical results of size ratios hmax/R of bubbles with different radius. The inset is a schematic diagram of the h-BN bubble structure. (b) Statistics of bubble numbers with different size ratios. It can be found that the size ratio of h-BN bubbles is concentrated around 0.092. The orange point represents the deviation of the bubble size ratio from 0.092, and the overall deviation value is within 10% (green area).
这表明气泡内部的vdW压强受顶部h-BN和h-BN衬底之间的黏附能影响. 为了实际测量h-BN气泡中的气体压强, 利用AFM的纳米压痕技术对气泡进行力-位移曲线的测量. 使用AFM探针在小距离范围内下压不同尺寸的气泡, 并记录相应的力-位移曲线(FDC). 为了避免在探针下压过程中破坏h-BN气泡, 设定了较小的探针压痕深度(约为15 nm). 图4(a)显示了不同尺寸气泡的FDC. 该图反映出随着气泡尺寸的增加, 要达到相同的下压深度($\delta $), 施加在探针上的力在逐渐减小. 这与(2)式所描述的压强与${h_{\max }}$之间的反比例关系一致. 图 4 h-BN气泡内压强的分析 (a) 通过AFM测得的不同尺寸的h-BN气泡的力-位移曲线, 随着探针下压深度的增加, 所需的力也随之增大, 不同尺寸气泡的力-位移曲线表现出不同的斜率; (b) 从实际测得的力-位移数据中提取的vdW压强随探针下压深度的关系, 虚线为对应数据组的线性拟合结果; (c) vdW压强与气泡最大高度hmax的关系图, 实线部分是针对1/hmax的非线性拟合结果 Figure4. Pressure analysis inside h-BN bubbles. (a) Force-displacement curves of the bubbles with different sizes are measured by AFM, which shows the force increases while the tip goes deeper. The FDCs of different-sized bubbles have diverse slopes. (b) vdW pressure inside bubbles extracted from the experimental data in panel (a) as a function of the indentation depth. Dashed lines are linear fits. (c) vdW pressure as a function of ${h}_{\max}$, the solid line is fitted to ${1/h}_{\max}$.