1.School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China 2.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 3.College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China 4.CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2017YFF0206106), the National Natural Science Foundation of China (Grant Nos. 51772317, 91964102), the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB30000000), the Shanghai “Super Postdoctor” Program, and the China Postdoctoral Science Foundation (Grant Nos. 2019T120366, 2019M651620)
Received Date:06 September 2020
Accepted Date:08 November 2020
Available Online:02 March 2021
Published Online:20 March 2021
Abstract:Hexagonal boron nitride (h-BN) is considered as an ideal substrate material for new electronic devices and nano-electromechanical (NEMS) devices, owing to its hexagonal network lattice structure and high chemical and mechanical stability. It can be used to seal gas with a long-term stability, and then has a big potential in further applications in electronics and NEMS. Recently, researchers have discovered that hydrogen atoms can penetrate multiple layers of h-BN non-destructively, forming the bubbles between layers, which can be used as NEMS devices. In this article, we investigate the effect of hydrogen plasma treatment duration on the size of h-BN bubbles. It is found that the size of bubbles becomes larger with the increase of treatment time while their distribution density decreases. It is also observed that the prepared h-BN bubbles have similar morphological characteristics, which are related to Young’s modulus of h-BN and interlayer van der Waals interaction. With the help of force-displacement curve measurement, it is obtained that the internal pressure is about 1—2 MPa for micro-sized bubbles, while the internal pressure of nano-sized bubbles can reach a value of GPa. Keywords:h-BN/ plasma treatment/ nano bubbles/ van der Waals heterostructure
全文HTML
--> --> -->
4.气泡尺寸分析气泡区域的h-BN虽然为多层, 但厚度有限, 气泡尺寸以及机械性能随h-BN层数的变化呈现弱相关性[28,29], 因此可以直接通过AFM对h-BN气泡的形貌结构进行测量, 进而提取不同尺寸气泡的截面轮廓并进行分析. 图3给出了气泡尺寸相关的统计信息. 气泡的最大高度与半径的比值(${h_{\max }}/R$)统计在图3(a)中. 统计结果反映出该比值趋向于一个定值, 说明${h_{\max }}/R$与气泡半径R以及体积V都不相关(${h_{\max }}/R$的另一组统计示例可参考补充材料的图S4 (online)). 图3(a)中的插图给出了典型的h-BN纳米气泡结构. 分析不同尺寸纳米气泡的尺寸比, 并将其统计在图3(b)中, 发现不同气泡的尺寸比都分布在固定值0.092的附近, 具体气泡的尺寸比与0.092的偏差范围仅在10%以内. 图 3 气泡特征尺寸的统计分析 (a) 对不同半径气泡的尺寸比统计结果, 插图是h-BN气泡的结构示意图; (b) 具有不同尺寸比的气泡数量统计, 可以发现h-BN气泡的尺寸比集中在0.092附近, 橙色点代表气泡的尺寸比与0.092的偏差, 整体偏差值在10%范围以内(绿色区域) Figure3. Characteristic analysis of bubbles. (a) Statistical results of size ratios hmax/R of bubbles with different radius. The inset is a schematic diagram of the h-BN bubble structure. (b) Statistics of bubble numbers with different size ratios. It can be found that the size ratio of h-BN bubbles is concentrated around 0.092. The orange point represents the deviation of the bubble size ratio from 0.092, and the overall deviation value is within 10% (green area).
这表明气泡内部的vdW压强受顶部h-BN和h-BN衬底之间的黏附能影响. 为了实际测量h-BN气泡中的气体压强, 利用AFM的纳米压痕技术对气泡进行力-位移曲线的测量. 使用AFM探针在小距离范围内下压不同尺寸的气泡, 并记录相应的力-位移曲线(FDC). 为了避免在探针下压过程中破坏h-BN气泡, 设定了较小的探针压痕深度(约为15 nm). 图4(a)显示了不同尺寸气泡的FDC. 该图反映出随着气泡尺寸的增加, 要达到相同的下压深度($\delta $), 施加在探针上的力在逐渐减小. 这与(2)式所描述的压强与${h_{\max }}$之间的反比例关系一致. 图 4 h-BN气泡内压强的分析 (a) 通过AFM测得的不同尺寸的h-BN气泡的力-位移曲线, 随着探针下压深度的增加, 所需的力也随之增大, 不同尺寸气泡的力-位移曲线表现出不同的斜率; (b) 从实际测得的力-位移数据中提取的vdW压强随探针下压深度的关系, 虚线为对应数据组的线性拟合结果; (c) vdW压强与气泡最大高度hmax的关系图, 实线部分是针对1/hmax的非线性拟合结果 Figure4. Pressure analysis inside h-BN bubbles. (a) Force-displacement curves of the bubbles with different sizes are measured by AFM, which shows the force increases while the tip goes deeper. The FDCs of different-sized bubbles have diverse slopes. (b) vdW pressure inside bubbles extracted from the experimental data in panel (a) as a function of the indentation depth. Dashed lines are linear fits. (c) vdW pressure as a function of ${h}_{\max}$, the solid line is fitted to ${1/h}_{\max}$.