Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51676071) and the National Key R&D Program of China (Grant No. 2017YFB0601801)
Received Date:18 August 2020
Accepted Date:10 September 2020
Available Online:03 February 2021
Published Online:20 February 2021
Abstract:To acquire the unique behavioral characteristics that droplets impact the Janus particle (amphiphilicity) sphere surface, a series of collision experiments is conducted by using Janus particles with a diameter of 5.0 mm. These Janus particles are prepared by chemical treatment of the copper particles. Water droplets with a diameter of 2.0 mm are used to impact hydrophbilic surface, hydrophobic surface and hydropholic-hydropholic boundary of Janus particle, under four Weber numbers which are 2.7, 10, 20 and 30, the corresponing Reynold numbers are 621.8, 1191.9, 1589.2 and 2185.1. The results show that the collision process can be divided into four stages: spread, retraction, oscillation and rebound. Under different Weber numbers, the behavioral characteristics of droplets are mainly affected by the surface wettability. On the hydrophbilic surface, the droplets exhibit the spreading characteristics, with increasing time the spreading coefficient gradually increases and finally tends to be stable. As Weber number increases, the difference in spreading coefficient for droplet under adjacent Weber number gradually decreases, indicating that droplets spreading is mainly affected by inertia. On the hydrophobic surface, the spreading coefficient on the figure presents a "parabola" shape. Droplets spreading takes the same time to reach the maximum spreading coefficient under different Weber numbers. However, when droplets impact the hydropholic-hydropholic boundary, droplets show spreading and rebound behavioral characteristics simultaneously. At the beginning of droplets spreading, the spreading coefficient has almost the same value on both sides of the hydropholic-hydropholic boundary. With the increase of time, part of droplets on the hydrophobic are attracted by the hydrophbilic side surface and go into hydrophbilic side zone. In order to explain this phenomenon, the concept of line tension is introduced and the line tension on the hydrophilic side is found to be less than that on the hydrophobic side by analyzing the forces on both sides of the droplets. Based on energy balance and force analysis, it is found that the mutual conversion of droplet kinetic energy and surface energy are the key factor to make droplets spread. The droplets possess the unique behavioral characteristics and reach an equilibrium state under the combined influence of gravity, inertial force, surface tension, viscous force, and contact force. Keywords:wettability/ droplet/ collision/ Janus particle
如图2所示为液滴碰撞Janus颗粒疏水侧时的具体运动状态, 可发现在韦伯数介于2.7至30下液滴的运动过程几乎一致, 先在表面铺展然后迅速回弹, 直至液滴脱离颗粒球表面. 因此可将液滴在疏水侧的运动大致划分为: 液滴铺展初期(I)、缓慢铺展 (II)、回弹 (III)及完全脱离 (IV) 4个过程. 图 2 不同We下液滴碰撞疏水侧球面行为的动态过程 Figure2. Dynamic behavior of droplet collision on the hydrophobic spherical surface under different We
与液滴碰撞Janus颗粒疏水侧的表现有所不同, 液滴碰撞Janus颗粒亲水侧后, 液滴的行为特性在0 < t < 3 ms内, 表现为铺展特性; 但在t > 3 ms中, 与碰撞疏水侧呈现出截然不同的现象, 液滴在达到最大铺展长度后只有小幅度的波动, 并不会呈现回弹现象, 如图4所示. 图 4 不同We下液滴碰撞亲水侧球面行为的动态过程 Figure4. Dynamic behavior of droplet collision on the hydrophilic spherical surface under different We.
为了更加清晰表达液滴撞击亲水侧的铺展因子变化, 图5给出了液滴在4种韦伯数下撞击Janus球颗粒表面的情况: 在0—3 ms内, 液滴以碰撞点为中心向球面四周快速铺展; 在3—12 ms内, 与液滴碰撞疏水侧的行为明显不同的是液滴在达到最大铺展长度后, 并没有呈现出指数下降的趋势, 而是发生振荡现象. 且最大铺展因子γ值不同, We = 2.7时, γ = 0.91; We = 30时, γ = 1.77. 发现相邻We的最大铺展因子差值不同 (H1 > H2 > H3), 汪焰恩等[23]对液滴正向撞击亲水球面的过程进行了数值模拟, 可发现在不同We下达到最大铺展系数时所需时间较为接近, 且最大铺展因子γ值不同. 即最大铺展因子随着We的增大, 差值H会逐渐减小, 表明γ的变化程度主要受惯性影响. 图 5 不同We下的动态铺展因子变化(亲水侧) Figure5. Dynamic spreading factor of droplet collision under different We (hydrophilic side).
23.3.液滴碰撞Janus颗粒亲疏水分界线的行为特征 -->
3.3.液滴碰撞Janus颗粒亲疏水分界线的行为特征
图6展示了液滴碰撞Janus颗粒亲疏水分界线的动态特性, 在0—3 ms, 液滴在亲水侧和疏水侧都表现为铺展特性, 达到最大铺展长度时所需时间相同; 在3—8 ms, 分界线两侧开始呈现出截然不同的现象, 分界线左侧液滴依然铺展在球颗粒表面, 而右侧液滴开始收缩团聚成椭圆形液滴 (We = 30, t = 5 ms); 随着时间增大, 可发现右侧液滴脱离球表面, 在t = 6.5 ms (如图6所示) 蓝色箭头所示, 处于腾空状态, 铺展和回弹现象同时发生. 造成这种现象的原因为左右两侧的亲疏水差异, 使两侧液滴受力不同. 图 6 不同We下液滴碰撞亲疏水分界线行为的动态过程 Figure6. Dynamic behavior of droplet collision on the hydrophilic-hydrophobic boundary under different We.
而图7更加充分的展示了液滴碰撞Janus颗粒亲疏水分界线的具体情况, 在Janus颗粒亲水侧γ随时间逐渐增大然后有小幅度的波动现象, 表明液滴亲水侧表面过程后期会发生小幅度的波动 (回弹-铺展-回弹过程); 而在Janus颗粒疏水侧γ随时间逐渐增大, 达到最大铺展长度时呈指数减小, 表明液滴在疏水侧表面快速铺展后会发生回弹现象. 随着We的增大, 在液滴铺展初期Janus颗粒亲水侧和疏水侧的γ值基本一致, 但随着时间的增加二者之间的差值也逐渐增大, 此外两侧重合时间也随We增大而增大: We = 2.7时, 重合时间为0.75 ms; We = 10时, 重合时间为1 ms; We = 20时, 重合时间为1.5 ms; We = 30时, 重合时间为1.75 ms. 图 7 不同We下的动态铺展因子变化 (亲疏水分界线) (a) 液滴在Janus亲水侧的变化; (b) 液滴在Janus疏水侧的变化 Figure7. Dynamic spreading factor of droplet collision under different We (the hydrophilic-hydrophobic boundary): (a) Dynamic spreading factor of droplet on the hydrophilic side; (b) dynamic spreading factor of droplet on the hydrophobic side.
为了更好探究造成液滴具有不同行为特征的原因, 对液滴进行受力分析, 如图8所示. 图 8 液滴在疏水侧、亲水侧和亲疏水分界线的受力 Figure8. Force analysis of the droplet on the hydrophobic side, hydrophilic side and hydrophilic-hydrophobic boundary.