1.Key Laboratory of Beam Technology Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China 2.Beijing Radiation Center, Beijing 100875, China 3.Department of physics, Beijing Normal University, Beijing 100875, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No.12075028)
Received Date:31 July 2020
Accepted Date:28 August 2020
Available Online:19 December 2020
Published Online:05 January 2021
Abstract:In order to realize micron scale to millimeter scale phase structure analysis, as well as accurate phase structure analysis of surface uneven samples, X-ray diffractometer named Hawk-II, which can adaptively adjust the diameter of irradiated X-ray beam spot according to the diameter of internal tangential circle at the measured point, is developed by combining X-ray diffraction technology, CCD camera imaging technology and slightly-focusing ploycapillary X-ray control technology. The X-ray source system, six-dimensional linkage motion system, CCD camera, detection system and control system based on LabVIEW are the main components of the Hawk-II. Compared with the 3°–5° divergence of the conventional X-ray source, the divergence of the X-ray emitted by the slightly-focusing polycapillary X-ray optics is only about 0.15° and also the intensity within the beam spot range is dozens of times stronger. Therefore, the shift of peak position will not appear due to the pores, curvature or uneven surface of the sample, when Hawk-II is used to analyze the samples with irregular surface. The diffraction pattern of the uneven Ren Min Bi five-cent coin are collected in the Hawk-II and PANalytical X-Pert Pro MPD conventional X-ray diffractometer respectively. By comparing the analysis results, it is found that the diffraction peaks measured by the X-Pert Pro MPD are shifted seriously, with a maximum deviation angle of 0.52°. While the diffraction peaks detected by the Hawk-II are basically consistent with the data from the standard PDF card, which verifies the advantages of the analysis of irregular samples by the Hawk-II. In order to explore the difference between different beam spots used for analysis at the same point, red and green porcelain fired in Qing dynasty and GaAs-based Cu and Fe plated films are analyzed by the Hawk-II. It is found that when the samples are relatively uniform, the intensities of diffraction peaks of different beam spots are relatively close, while when the samples are not uniform, the diffraction peaks vary greatly. Especially, some microcrystalline phases can be detected only with large beam spots. In addition, to verify the adaptive functionality of the Hawk-II, a bronze from the Western Han Dynasty, with different rust spots on it, is tested. It is found that the Hawk-II can adjust the beam spot size according to the different corrosion points, making the irradiation area coincide with the area to be analysed and the phase structure detected more accurately. Therefore, the Hawk-II is a general purpose X-ray diffractometer, which has the analytical capability from micron scale to millimeter scale and the energy dispersive X-ray fluorescence analysis function. Moreover, it has the advantages of the accurate analysis of irregular samples, fast detection speed, simple operation, etc. Based on the above analysis, the Hawk-II will be widely used in different fields. Keywords:X-ray diffractometer/ polycapillary X-ray optics/ adaptive X-ray spot/ point source
全文HTML
--> --> --> -->
2.1.自适应X射线束斑的实现
Hawk-II的自适应调节X射线束斑直径的功能是通过CCD相机成像技术和毛细管微会聚X射线调控技术的特点来实现的. 毛细管X光透镜束斑直径(full width at half maxima, FWHM)与探测点到透镜出口端距离F之间的关系如图1[13]所示, 从透镜出口端到焦斑处X射线束的直径逐渐变小[13]. 因此, 通过改变透镜出口端与探测点F可以获得不同直径的照射X射线束斑. Hawk-II所采用的毛细管微会聚X光透镜聚焦X射线的束斑变化示意图如图2所示. 由刀口扫描法[14]测得选用的毛细管微会聚X光透镜在Cu-Kα(8.04 keV)能量下焦斑F2处的束斑直径最小约为680 μm, 透镜出口端的束斑直径最大约为1300 μm. 自适应调节X射线束斑直径的具体过程如下: 首先由CCD相机实时观测样品待测区域, 在CCD相机视野里框选出待测区域的内切圆, 接着由测量软件计算出待测区域内切圆的直径并将数据传输给计算机, 再由计算机控制光管运动系统沿X射线轴线运动, 使照射X射线束斑直径与实际待测区域内切圆的直径相符, 以实现根据实际待测区域大小自适应调节照射X射线束斑直径的功能. 图 1 透镜束斑大小(FWHM)与探测点到透镜出口端距离(F)之间的关系 Figure1. The FWHM of X-ray beam spots varied with the distances (F) from the measured spots to the exit of polycapillary X-ray optics.
图 2 毛细管微会聚X光透镜聚焦X射线的束斑变化示意图 Figure2. Diagram of changes in beam spot size of X-ray focus by the slightly-focusing polycapillary X-ray optics.
22.2.Hawk-II的组成 -->
2.2.Hawk-II的组成
Hawk-II主要由X射线源系统、六维联动运动系统、CCD相机、X射线探测系统和软件控制系统组成, 其结构如图3所示. X射线源系统由X射线管(Cu靶, 荷兰PHILIPS, 1 mm × 1 mm点光源, 最大功率为2600 W)、毛细管微会聚X光透镜(后焦距为200 mm, 焦斑为680 μm)、吸收片(Ni, 厚度为17 μm)、闭环水冷系统和高压电源组成. 六维联动运动系统包括一维光管运动系统、二维θ-2θ角扫描系统和三维样品台运动系统, 其中一维光管运动系统可以沿X射线轴向运动来调整透镜出口端相对于样品的距离; 二维θ-2θ角扫描系统由两个联动的转角组成, 可以实现X射线衍射分析所需的角扫描; 三维样品台运动系统控制样品运动使待测点保持在角扫描系统的轴心上. CCD相机具有20倍的放大功能、1400万像素. X射线探测系统由X射线探测器、集成式脉冲分析器和索拉狭缝组成, 探测器和分析器采用美国Amptek 公司的SDD X射线探测器(Be窗有效面积为25 mm2, 厚度为8 μm, 5.9 keV能量处FHWM = 130 eV)和PX5单/多通道数字脉冲分析器. 软件控制系统包括计算机、可编程逻辑控制器(programmable logic controller, PLC)和基于LabVIEW的控制软件组成. 由控制软件输入信号再传递给PLC, 由PLC发出脉冲信号给六维联动运动系统的电机使其运动. 控制系统通过调用PX5的单通道脉冲分析功能启动衍射分析模式, 调用PX5的多通道脉冲分析功能启动荧光分析模式. 图 3 点光源的自适应束斑X射线衍射仪(Hawk-II)结构示意图 Figure3. The schematic diagram of adaptive beam spot X-ray diffractometer with point source (Hawk-II).
22.3.Hawk-II的性能参数 -->
2.3.Hawk-II的性能参数
32.3.1.单色化 -->
2.3.1.单色化
Hawk-II采用17 μm厚的Ni吸收片做为单色器吸收来自Cu靶的Cu-Kβ, 为X射线衍射分析提供所需的单色化X射线. 加Ni吸收片和不加Ni吸收片的X射线散射光谱[15]如图4所示, 其实验条件为: 电压40 kV, 电流2 mA, 探测时间300 s. 由图4可以得出, 加Ni吸收片后Cu-Kα的强度占总X射线强度的比值由84.48%上升到99.62%, 而Cu-Kβ的强度比值由13.99%降低到0.27%, 因此经过Ni吸收片后的X射线为Cu-Kα的单色X射线. 图 4 加Ni吸收片和不加Ni吸收片两种条件下的X射线散射谱 Figure4. X-ray scattering spectra with and without Ni filter.
32.3.2.测量准确度 -->
2.3.2.测量准确度
衍射仪固有的角度测量准确度直接影响物相分析结果的准确性[16]. 为了验证Hawk-II的测量准确度, 选取衍射峰位于10°到120°之间低角度、中角度和高角度的三种标准物质: 单晶Si(1 1 1)(JCPDS 75-0590), 单晶Si(4 0 0)(JCPDS 75-0590)和单晶GaAs(5 1 1)(JCPDS 29-0615)进行X射线衍射分析. 所测得的三种标准物质的衍射图叠加在图5中, 实验条件为: 电压30 kV, 电流30 mA, 步距角0.1°, 探测时间0.5 s, 照射X射线束斑直径1300 μm. 从图5可以看出, Hawk-II所测得的衍射峰位与三种标准物质的PDF卡的衍射峰位(图5中虚线所示)符合得很好. 表1展示了三种标准物质衍射峰位的测量值与PDF卡的对比, 分析可知Hawk-II测得的每个衍射峰的角度误差都小于0.01°. 以上分析结果表明, Hawk-II具有较高的测量准确度. 图 5 Si (1 1 1), Si (4 0 0)和GaAs (4 1 1)的衍射图 Figure5. The XRD patterns of Si (1 1 1), Si (4 0 0) and GaAs (4 1 1) crystals.
参考数据
测量数据
PDF卡
2θ/(°)
(hkl)
2θ/(°)
Si(JCPDS 75-0590)
28.443
(1 1 1)
28.441
Si(JCPDS 75-0590)
69.131
(4 0 0)
69.136
GaAs(JCPDS 29-0615)
90.141
(5 1 1)
90.132
表1Si (1 1 1), Si (4 0 0)和GaAs (4 1 1)的测量数据对比 Table1.The comparison of measurement data of Si (1 1 1), Si (4 0 0) and GaAs (4 1 1).
对一块清代红绿彩瓷残片的白釉分别采用直径为680和1300 μm的X射束进行衍射分析, 分析结果如图8所示. 实验条件为: 电压30 kV, 电流30 mA, 步距角0.15°, 探测时间5 s. 分析图8可知, 清代红绿彩瓷白釉的主要晶相为钾长石KAlSi3O8(JCPDS 09-0462)和莫来石3Al2O3·2SiO2 (JCPDS 02-0452). 两种X射线束斑下所测得的衍射图峰形和衍射图强度都较为相似, 虽然采用的照射X射线束斑直径不同但是X射线总照射强度却并未改变, ,而两种X射线束斑下的衍射强度变化不明显,说明清代红绿彩瓷白釉的晶相分布比较均匀. 由于直径为1300 μm的X射线束斑照射面积更大, 照射范围内的某些微晶数量更高, 其衍射峰能更好地呈现出来, 所以衍射图中部分弱峰只有采用直径为1300 μm的X射线束才能探测到. 衍射图中20°到30°之间的弥散峰主要是瓷釉在烧制过程中所形成的非晶相所致. 图 8 清代红绿彩瓷白釉不同照射束斑的衍射图对比 Figure8. The comparison of XRD patterns of Qing Dynasty red and green porcelain white glaze with different beam spots.
33.2.2.纳米薄膜材料的物相分析 -->
3.2.2.纳米薄膜材料的物相分析
选取GaAs(1 0 0)单晶为基底, 表面镀20 nm厚的 Cu和Fe纳米薄膜材料为样品[17](采用的镀膜方法为金属蒸汽真空弧离子源法), 分别使用直径为680和1300 μm的照射X射线束对纳米薄膜样品进行物相分析, 实验结果如图9所示. 实验条件为: 电压30 kV, 电流30 mA, 步距角0.15°, 探测时间1 s. 分析图9可知, 不同直径的X射线束斑所测得的晶相相同, 为CuO(JCPDS 02-1041)和Fe2O3(JCPDS 24-0072)的晶相, 这两种晶相是由薄膜中的Cu和Fe在空气中氧化所形成. 衍射图中晶相的峰面积出现了较大变化, 相比于直径为680 μm的X射线束斑, 在直径为1300 μm的X射线束斑下Fe2O3晶相的峰面积增加了近2倍, 而CuO晶相的峰面积增加了1.5倍左右, 这表明不同X射线束斑照射范围内同一晶相的密度不同, 并且两种晶相的分布相互之间也不成比例, 因此可以推断该纳米薄膜材料表面的Cu和Fe镀膜分布不均匀[17]. 图 9 GaAs为基底表面镀Cu和Fe的纳米薄膜在不同照射束斑下的衍射图对比 Figure9. The comparison of XRD patterns of GaAs based Cu and Fe plated film with different beam spots.
为验证Hawk-II自适应调节照射X射线束斑的功能, 选取一块西汉青铜碎片做为样品, 其不同锈蚀点的面积大小不一并且锈蚀表面不平整, 为准确地探测到锈蚀点所有的物相信息, 应使X射线照射区域与锈蚀区域相符. 选取如图10所示的青铜绿锈、红锈、黑锈和截面做为待测点对其进行物相分析. 图 10 西汉青铜及其测试点 Figure10. A piece of bronze produced in western Han Dynasty and the detected points.