1.Key Laboratory of Environmental Optics and Technology of Chinese Academy of Sciences, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 2.School of Mathematics and Physics, Anhui University of Technology, Maanshan 243002, China 3.School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China 4.School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China 5.Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2017YFC0209400), the National Natural Science Foundation of China (Grant Nos. 41705015, 41905130),Youth Science and Technology Talents Support Program (2020) by Anhui Association for Science and Technology (Grant No. RCTJ202002) and the Foundation of Director of Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China (Grant No. AGHH201601)
Received Date:05 July 2020
Accepted Date:14 August 2020
Available Online:19 December 2020
Published Online:05 January 2021
Abstract:NO3 radical is the most important oxidant in atmospheric chemistry at night, and it controls the oxidation and removal of various trace gas components in the atmosphere. The understanding of the chemical process of NO3 radical is of great significance for studying the atmospheric pollution processes such as haze. The NO3 radical has a low concentration and strong activity, so it is relatively difficult to measure accurately. We report here in this paper an instrument for unambiguously measuring NO3 based on broadband cavity enhanced absorption spectroscopy (BBCEAS). To achieve the robust performance and system stability under diverse conditions, this BBCEAS instrument has been developed, with efficient sampling, and resistance against vibration and temperature change improved, and the BBCEAS instrument also has low-power consumption. The 660-nm-wavelemngth light-emitting diode (LED) is used as a light source of the BBCEAS system. The sampling gas path with low loss and suitable for domestic high-particle environment is designed. Through the LED light source test, the optimal working current and temperature can be obtained to achieve the acquisition of NO3 absorption spectrum with high signal-to-noise ratio. Considering the fact that the water vapor absorption is an important interference factor for the measurement of NO3 radical by BBCEAS, the daytime atmospheric measurement spectrum is used as a background spectrum, and participates in spectral fitting of NO3 to reduce the effect of water vapor. The mirror reflectivity and effective cavity length are calibrated, and the Allan variance analysis is also carried out. The reflectance of the mirror can reach about 0.99993 at 662 nm (NO3 absorption peak), and the corresponding theoretical effective optical path can reach more than 7 km, which can meet the measurement requirements of atmospheric NO3 radicals. The detection limit (1σ) of 0.75 pptv for NO3 is achieved with an acquisition time of 10 s and a total measurement error of about 16%. The atmospheric NO3 radical observation is carried out in Hefei. During the observation period, the highest NO3 concentration is 23.4 pptv, demonstrating the promising potential applications in in-situ, sensitive, accurate and fast simultaneous measurements of NO3 in the future by using the developed broadband cavity enhanced absorption spectroscopy. Keywords:NO3/ BBCEAS/ high sensitivity
研制的大气NO3宽带腔增强吸收光谱测量系统示意图如图1所示, 主要由LED光源、透镜、两端安装高反镜的光学腔和光谱仪等组成. LED发出的光通过消色差透镜准直后从腔体一端进入光学腔, 光束在光学腔内经多次反射吸收, 从另一端透射出去, 最终传输至光谱仪进行光谱分析. 图 1 基于红光LED的宽带腔增强吸收光谱系统示意图 Figure1. The schematic diagram of broadband cavity enhanced absorption spectrometer based on red LED.
宽带腔增强吸收光谱系统探测性能的关键在于高信噪比、高稳定性的待测气体吸收光谱信号的获取, 因此首先对采用的LED光源进行测试, 通过实验确定最佳工作参数. 选用可改变输出电流强度的恒流源对红光LED供电, 使用光谱仪测量LED的辐射光谱. 实验对比了不同驱动电流条件下的LED辐射谱强度(在电流测试时, 保持LED温度稳定), 测试结果如图2(a)所示, 在驱动电流小于1.5 A情况下, LED辐射谱强度随着电流的增加会有明显增加, 但超过1.5 A之后, 电流的增加对于NO3吸收峰处(662 nm)辐射谱强度增加的贡献减少, 光谱峰值红移明显, 因此实际使用中LED光源的电流确定为1.5 A. 图 2 LED光源测试 (a) LED光谱随电流变化规律; (b) LED光谱随温度变化规律 Figure2. Test of the LED light source: (a) LED spectrum changes with the current; (b) LED spectrum changes with temperature.
其中, $\alpha _{{\rm{Ray}}}^{{{\rm{N}}_2}}(\lambda )$为高纯氮气Rayleigh散射系数, $\alpha _{{\rm{Ray}}}^{{\rm{He}}}(\lambda )$为高纯氦气Rayleigh散射系数, ${I_{{{\rm{N}}_2}}}(\lambda )$和${I_{{\rm{He}}}}(\lambda )$分别为腔内充满高纯氮气和氦气时的测量谱, $R(\lambda )$为镜片反射率随波长变化曲线, d为腔长. 进行宽带腔增强吸收光谱系统镜片反射率标定时, 分别将高纯氮气(99.9999%)和氦气(99.9999%)依次通入腔内, 光谱稳定后分别记录相应的光谱强度${I_{{{\rm{N}}_2}}}(\lambda )$和${I_{{\rm{He}}}}(\lambda )$, 氮气和氦气的瑞利散射系数可查询文献[33], 根据(2)式可计算出镜片反射率随波长的变化曲线R(λ), 结果如图3所示, NO3吸收峰662 nm处的镜片反射率可以达到约0.99993, 对应理论有效光程可达到7 km以上, 能够满足大气NO3测量要求. 图 3 镜面反射率标定 (a)黑线是氮气谱, 红线是氦气谱; (b)蓝线为镜面反射率曲线 Figure3. Calibrations of mirror reflectivity: (a) The black line is nitrogen spectrum, and the red line is helium spectrum; (b) the blue line is the derived curve of mirror reflectivity.
式中d0为两片高反镜之间的距离, [NO2]purge on和[NO2]purge off是在有无吹扫保护气时NO2的浓度反演值. 有效腔长标定结果如图4所示, 通过直尺测量d0为53.0 cm, [NO2]purge on和[NO2]purge off的平均反演浓度分别为1830和1986 ppbv, 计算该流速下的有效腔长deff为48.8 ± 0.5 cm. 图 4 有效腔长标定 (a)NO2光谱拟合结果(b) NO2浓度时间序列 Figure4. Calibration of effective cavity length: (a) Results of NO2 spectral fitting; (b) time series of NO2.
23.4.NO3的浓度反演 -->
3.4.NO3的浓度反演
拟合波段的选择需要综合考虑待测气体吸收峰位置、LED光源峰型、高反镜的高反区域、待测气体之间的相互干扰等众多因素, 通过不断测试和对比, NO3拟合波段选择为655.5—668 nm, 该拟合波段除了NO3, 也同时有NO2和水汽的吸收. 由于大气中的水汽浓度相比于痕量气体浓度高很多, 而水汽的吸收线宽小于光谱仪的分辨率, 导致水汽存在饱和吸收现象, 采用传统宽带腔增强吸收光谱拟合方法很难将水汽吸收完全扣除, 若无法扣除水汽干扰, 光谱拟合过程中较大的剩余结构会掩盖大气NO3的吸收结构, 导致大气NO3的探测灵敏度下降. 此外, 由于待测气体NO3自由基活性很强, 极易碰撞损耗, 无法通过干燥装置等在不影响NO3的前提下滤除水汽, 因此, 水汽成为宽带腔增强吸收光谱技术测量大气 NO3的重要干扰因素. 目前对于宽带腔增强吸收光谱技术扣除水汽干扰开展了较多研究, 有NO滴定方法[10]和水汽截面迭代计算方法[17]等, 本研究尝试采用白天大气测量谱作为背景谱, 来减少宽带腔增强吸收光谱技术测量NO3自由基过程中水汽的影响, 该方法常在长光程差分光学吸收光谱技术(LP-DOAS)测量大气NO3自由基时使用[34]. 由于NO3自由基白天浓度极低, 可以认为白天的大气测量谱包含水汽和NO2吸收信息, 但不包含NO3自由基吸收, 该方法假定傍晚与夜间的水汽浓度以及温度变化在一定范围内, 选择白天测量谱作为背景谱对夜间测量谱进行光谱拟合反演, 能够有效扣除大部分水汽吸收的干扰. 开展大气NO3测量时, 选取日落前的大气测量谱作为背景谱, 通过(1)式对夜间大气NO3测量谱进行光谱反演, 获得吸收系数$\alpha \left( \lambda \right)$, 选择国际通用的NO3[35], NO2[36]和水汽[37]的标准截面与仪器函数卷积后乘以相关转换系数获得参考截面, 水汽吸收截面可根据实际温度进行补偿修正, 通过最小二乘拟合可以计算出待测气体NO3的浓度, 图5是实测大气中NO3的光谱反演实例, 当天傍晚与夜晚的温度差小于10 ℃, 拟合得到NO3浓度为12.2 ± 0.61 pptv, 光谱拟合残差的标准偏差为 8.7 × 10–10, 从光谱拟合图可以看出NO3自由基的吸收结构明显, 水汽吸收结构较小, 拟合残差没有明显的结构, 光谱拟合效果较好, 表明采用白天大气测量谱作为背景谱这种方法能够在宽带腔增强吸收光谱技术测量大气NO3自由基时有效减少水汽的干扰. 需要注意的是, 由于使用的背景谱包含了水汽和NO2的吸收, 此方法拟合得到的水汽和NO2浓度为相对值, 并非真实大气浓度. 此外, 针对水汽干扰扣除问题, 在进一步研究中可以尝试根据采样气流的温度、压力、湿度等参数对水汽吸收截面进行修正与补偿, 再参与光谱拟合这种方法, 从而减少宽带腔增强吸收光谱技术测量大气NO3自由基过程中的水汽影响. 图 5 实测大气中NO3的光谱反演实例 (a) 灰线是实测大气的吸收谱, 红线是拟合谱; (b) 灰线是NO3的吸收谱, 红线是拟合谱, 反演浓度12.2 ± 0.61 pptv; (c) 灰线是NO2的相对吸收谱, 红线是拟合谱; (d) 灰线是水汽的相对吸收谱, 红线是拟合谱; (e) 拟合残差谱, 标准偏差为8.7 × 10–10 Figure5. Spectral inversion example of NO3: (a) The grey line is the absorption spectrum of the measured atmosphere, and the red line is the fitting spectrum; (b) the gray line is the absorption spectrum of NO3 and the red line is the fitting spectrum, concentration of NO3 is 12.2 ± 0.61 pptv; (c) the grey line is the relative absorption spectrum of NO2, and the red line is the fitting spectrum; (d) the gray line is the relative absorption spectrum of water vapor, and the red line is the fitting spectrum; (e) the gray line is residual spectrum, and the standard deviation of residual spectrum is 8.7 × 10–10.
NO3的Allan方差随平均时间t (= N × 4 s)的变化曲线如图6(a)所示. 在开始的测量阶段内(t < 10 s), 白噪声占主导地位, Allan方差与标准方差是等价的, 二者以相同的斜率减小(斜率为–0.5). 随后标准方差开始偏离理想白噪声, 而Allan方差继续减小, 直到约2000 s, 然后系统漂移占主导地位, Allan方差随采集时间逐渐增加. 图6(b)和图6(c)分别为4 s积分时间情况下的NO3浓度统计图和时间序列. 根据图6, 可以得到自主研制的NO3自由基宽带腔增强吸收光谱系统在积分时间为4 s的情况下, NO3自由基极限探测灵敏度达到1.15 pptv, 在积分时间为10 s的情况下, 极限探测灵敏度达到0.75 pptv. 图 6 检测限分析 (a) NO3的Allan方差和标准方差随平均时间的变化曲线; (b) 4 s积分时间情况下的NO3浓度统计图; (c) 4 s积分时间情况下的NO3浓度时间序列 Figure6. Analysis of detection limit: (a) Change curves of Allan variance and standard variance of NO3 with average time; (b) statistical chart of NO3 concentration with 4 s integration time; (c) time series of NO3 concentration with 4 s integration time.