Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61471389, 61671464, 61701523, 61801508) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2018JM6040, 2019JQ-103, 2020JM-350)
Received Date:27 May 2020
Accepted Date:13 August 2020
Available Online:27 November 2020
Published Online:05 December 2020
Abstract:The transmission polarization conversion metasurface has been widely concerned, because it has the advantage of being easy to be conformal with the antenna. Based on the reasonable arrangement of transmission polarization conversion units, various and complex electromagnetic functions can be realized. As the electromagnetic open window on the flight platform, the antenna is the bottleneck that restricts the decrease of radar cross section (RCS) of the whole flight platform. It is difficult to simultaneously realize the normal and efficient radiation of the antenna and the decrease of the RCS of the antenna. When the designed transmission metasurface is used in the antenna design, the radiation and scattering of the antenna can be regulated comprehensively. In this paper, a composite polarization conversion metasurface is proposed and verified. The unit cell of composite polarization conversion metasurface consists of two mirror symmetrical anisotropic metal patches in the upper layer, a dielectric layer and a polarization gate in the lower layer. When the polarization direction of the incident electromagnetic wave is perpendicular to the extension direction of the polarization gate and arrives at the composite polarization conversion surface, the conversion surface can realize the conversion from transmission linear polarization to right-hand circular polarization in a frequency range from 9.3 GHz to 10.9 GHz. When the polarization direction of the incident electromagnetic wave is parallel to the extension direction of the polarization gate, co-polarized total reflection can be realized. The chessboard arrangement metasurface is composed of composite polarization conversion unit and its mirror unit. A novel linearly polarized chessboard arrangement metasurface antenna is composed of the linearly polarized source microstrip antenna with a bandwidth of 9.4–10.7 GHz and the chessboard arrangement metasurface. By using the counter rotating cancellation characteristic of circular polarization, the chessboard arrangement metasurface antenna maintains linearly polarized radiation. Comparing with the source microstrip antenna, the linear polarization purity of chessboard arrangement metasurface antenna is improved from 9.5 GHz to 10.5 GHz. At the same time, the forward gain of the chessboard arrangement antenna increases and the radar cross section decreases. The maximum reduction is 39.2 dB. To further verify the practicability of the design and analysis, the chessboard arrangement metasurface antenna sample is fabricated and measured in microwave anechoic chamber with an Agilent 5230C network analyzer. The experimental results are in good agreement with the simulation results. This study has important reference value in the design of high gain, low RCS antenna and integrated regulation radiation and scattering of antenna. Keywords:transmission polarization convention/ metasurface/ antenna
全文HTML
--> --> -->
2.复合型极化转换表面单元设计与仿真验证对于上下表面具有相同金属贴片设计的各向异性结构透射型线-圆极化转换超表面, 主极化波透射会产生一个左(右)旋圆极化波, 交叉极化波透射时会产生与主极化波透射旋转方向相反的右(左)旋圆极化波. 当入射波空间内存在较大的交叉极化分量时, 主极化和交叉极化透射过表面会产生两个旋转方向相反的圆极化波. 在前向辐射空间叠加后, 两个相反旋向相反的圆极化波将会产生相消, 使圆极化轴比变差, 影响线-圆极化透射效果. 所以在透射型极化转换表面的应用中, 要尽量减小源天线和极化转换表面形成的空气腔中存在的交叉极化分量. 空气腔中的交叉极化分量主要来自于线极化源天线辐射时所产生的交叉极化分量, 以及主极化波入射到极化转换表面时部分反射带来的交叉极化反射分量. 极化转换表面部分反射所带来的交叉极化反射分量是由超表面结构本身决定的, 应用极化栅的设计思想可以很好解决该问题[21]. 本文中提出的复合型极化转换表面单元结构如图1所示, 黄色部分为金属, 蓝色部分为介质. 该结构由上层两片镜像对称的各向异性金属贴片、介质层(介电常数为2.55, 电损耗角正切为0.001)和下层极化栅组成, 单元的结构参数为: h = 2.5 mm, p = 6.0 mm, a = 3.4 mm, b = 1.9 mm, d = 0.1 mm, c1 = 0.2 mm, c2 = 0.4 mm. 在Ansoft HFSS 15.0软件中设置无限周期边界条件对该单元进行仿真分析. 图 1 复合型极化转换表面单元结构示意图 Figure1. Schematic of the unit of composite polarization conversion metasurface.
在三维直角坐标系中, 定义极化栅延伸方向平行于y坐标轴, 入射波方向由–z指向z垂直于极化栅, 如图1所示. 入射波为x极化波时, Txx, Tyx, Rxx, Ryx分别表示x极化到x极化透射, x极化到y极化透射, x极化到x极化反射, x极化到y极化反射. 设置扫频范围为8—12 GHz, 图2(a)可见, 透射的x极化分量和y极化分量在10 GHz附近幅值曲线有交叉, 幅值相近. 图2(b)中命名为相位差的曲线代表透射的y极化分量和透射的x极化分量之间的相位差Δφ, y极化分量的相位领先于x极化分量, 在10 GHz附近相位差近似为90°. 根据圆极化波形成的幅值和相位条件可知, 该复合型极化转换表面可以实现x极化-左旋圆极化透射. 圆极化轴比(axial ratio, AR)可以由(1)式[21]计算, 得到的轴比曲线如图2(a)所示, 3 dB轴比带宽为9.3—10.9 GHz. 图 2 复合型极化转换单元透射系数、反射系数、相位和轴比曲线 (a) 透射系数、反射系数和轴比; (b) 相位和相位差 Figure2. The transmission coefficient, reflection coefficient, phase and AR of the unit of composite polarization conversion metasurface: (a) Transmission coefficient, reflection coefficient and AR; (b) phase and phase difference.
为了从透射能量的角度, 进一步分析工作原理. 在10 GHz频点处, 分析了单元分别在x极化波和y极化波入射时的上下表面感应电流强度和电场强度分布. 图4(a)为x极化波入射时, 单元上下表面的感应电流强度和电场强度分布, 图4(b)为y极化波入射时, 单元上下表面的感应电流强度和电场强度分布. 为了方便对比分析, 在不同的极化波入射下, 对电流强度分布和电场强度分布分别取相同的幅值刻度. 图 4 10 Hz频点处, 复合型极化转换单元感应电流强度和电场强度分布图 (a) x极化入射波; (b) y极化入射波 Figure4. The induced current and electric field intensity distribution of composite polarization conversion metasurface: (a) x-polarized incident wave; (b) y-polarized incident wave.
当x极化波由–z到z入射时, y向极化栅可以很好地透射x极化波, 在上层各向异性金属贴片激发感应电流, 实现极化转换. 单元上下两层均有电场分布, 验证了单元在x极化电磁波照射下良好的透射特性. 当y极化波由–z到z入射时, 极化栅阻挡了电磁波的通过. 由于极化栅对电磁波的反射, 仅在单元下表面激发了感应电流, 单元上表面各向异性金属贴片没有感应电流. 由于电磁波被y向极化栅完全屏蔽, 单元上下表面均没有电场分布. 为了验证复合型极化转换表面的透射型线-圆极化转换特性, 本文设计了一款工作于10 GHz的线极化微带天线作为辐射源天线, 如图5(a)所示. 天线的结构参数为: l0 = 72 mm, r1 = 1.2 mm, r2 = 3 mm, w = 12 mm, l1 = 2.7 mm, l = 8.2 mm, h1 = 2 mm, h2 = 30 mm, 工作带宽为9.4—10.7 GHz. 将极化转换单元组成12 × 12的极化转换超表面, 作为电磁表面覆层置于辐射源天线上, 并将其命名为12 × 12排布表面-天线, 如图5(b)所示. 图 5 源微带天线和基于12 × 12单元排布表面的圆极化高增益天线 (a)线极化微带天线; (b)圆极化高增益天线 Figure5. The source microstrip antenna and circularly polarized high gain antenna based on 12 × 12 units arrangement matasurface (a) The linearly polarized microstrip antenna; (b) the circularly polarized high gain antenna.
设置辐射边界条件, 源天线和12 × 12排布表面-天线仿真结果对比如图6所示. 12 × 12排布表面-天线的反射系数与源天线相比向低频偏移, 但是阻抗匹配情况得到了很好的保持, –10 dB带宽为9.4—10.6 GHz; 通过图6(b)可知, 12 × 12排布表面-天线3 dB圆极化带宽为9.2—10.8 GHz, 实现了透射型线-圆极化转换. 图 6 12 × 12排布表面-天线与源天线对比图 (a) 反射系数随频率变化曲线; (b) 轴比随频率变化曲线; Figure6. Comparison between the 12 × 12 units arrangement metasurface-antenna and source antenna: (a) Reflection coefficient varies with frequency; (b) AR varies with frequency.
3.基于棋盘排布表面的线极化低RCS高增益天线本节以复合型极化转换表面的线-圆极化透射特性为基础, 并以实现天线的辐射散射综合调控为目标, 设计了一款基于棋盘排布表面的线极化低RCS高增益天线. 根据镜像对称原理, 将上层金属贴片镜像对称后, 仍然以x极化波作为辐射源, 可以实现x极化波到右旋圆极化波透射, 如图7所示. 图 7 线-圆极化转换现象示意图 (a) 线-左旋圆极化转换; (b) 线-右旋圆极化转换 Figure7. Schematic of the linear to circular polarization conversion phenomenon: (a) Linear to left-hand circular polarization conversion; (b) linear to right-hand circular polarization conversion.
扫频仿真对比结果如图11(a)所示, 定量分析了两款天线法向单站RCS情况. 棋盘排布表面-天线在9.4—11.7 GHz实现了法向单站RCS减缩, 最大RCS减缩幅值达39.2 dB. 图 11 天线低RCS特性分析曲线 (a) 源天线和棋盘排布表面-天线单站RCS; (b) 单元及其镜像单元反射幅值曲线; (c) 单元及其镜像单元极化转换率曲线; (d) 单元及其镜像单元反射相位曲线 Figure11. Analysis curve of low RCS characteristics of antenna: (a) Source antenna and chessboard arrangement metasurface-antenna single station RCS; (b) reflection amplitude curve of unit and its mirror unit; (c) polarization conversion curve of unit and its mirror unit; (d) reflection phase curve of unit and its mirror unit.