1.School of Electronic and Information Engineering, Beihang University, Beijing 100191, China 2.Beijing Advanced Innovation Certer for Big Data and Brain Computing, School of Microelectronics, Beihang University, Beijing 100191, China 3.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4.School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 5.Beihang-Goertek Joint Microelectronics Institute, Qingdao Research Institute, Beihang University, Qingdao 266000, China
Fund Project:Project supported by Beijing Natural Science Foundation (Grant No. 4194083), the National Natural Science Foundation of China (Grant Nos. 61905007, 61774013, 11827807, 61731001), and the National Key R&D Program of China (Grant No. 2019YFB2203102)
Received Date:10 April 2020
Accepted Date:06 May 2020
Available Online:12 May 2020
Published Online:20 October 2020
Abstract:We systematically investigate the influence of annealing effect on terahertz (THz) generation from CoFeB/heavy metal heterostructures driven by femtosecond laser pulses. The THz yield is achieved to increase triply in W/CoFeB through annealing effect, and doubly in Pt/CoFeB. The annealing effect originates from both the decrease of synthetic effect of THz absorption and the increase of hot electron mean free path induced by crystallization, with the latter being dominant, which is experimentally corroborated by THz transmission measurement of time-domain spectrum and four-probe resistivity t. Our observations not only deepen understand the spintronic THz radiation mechanism but also provide a novel platform for high speed spintronic opto-electronic devices. Keywords:terahertz emission/ ferromagnetic/heavy metal heterostructure/ annealing effect/ super-diffusion model
全文HTML
--> --> -->
3.讨 论以前的报道指出, 当提高退火温度时, 钴铁硼会经历从非晶态到纳米晶嵌入的非晶态的相变[25-27], 而退火不会对晶体结构以及钨[28]和铂[25]中相关的性质产生显著影响. 这种再结晶可能会提高钴铁硼层中太赫兹波的传输和自旋电流的生成, 从而增强退火样品中太赫兹波的发射. 为了深入了解退火效应对太赫兹波发射增强的影响, 我们随后在样品中可能的机理进行了全面的分析. 第一个是在退火和未退火的钨(4.0)/钴铁硼(2.2)和铂(4.0)/钴铁硼(2.2)样品上进行太赫兹波透射实验. 该实验在太赫兹时域光谱仪中进行. 这套太赫兹时域光谱仪与太赫兹发射系统共用飞秒激光振荡器, 但产生太赫兹的辐射源采用低温生长砷化镓光导天线, 探测太赫兹波采用1 mm厚的碲化锌晶体[29]. 在这个测量中, 太赫兹光路部分充入氮气以消除水蒸气的影响. 相比于未退火样品, 经过退火处理的两个样品的太赫兹波透射强度显现出轻微并且可重复的增强现象, 见图4(a),(b). 在钨(4.0)/钴铁硼(2.2)中, 传输的太赫兹信号的强度增加了1.36%, 而在铂(4.0)/钴铁硼(2.2)中, 该数值增加了3.75%. 以上结果表明, 退火效应确实可以增强太赫兹波的透射, 进而通过降低发射过程中材料对太赫兹波的吸收率来提高太赫兹波发射. 但是, 考虑到退火后样品发射的太赫兹波强度具有2倍和3倍增大, 以上因素有可能并不是主要原因. 图 4 (a), (b) 退火和未退火状态下, 钨(4.0)/钴铁硼(2.2)和铂(4.0)/钴铁硼(2.2)样品透射的太赫兹时域信号, 插图为峰值放大图; (c) 样品电阻率的退火温度依赖性, 插图为样品的磁光克尔测量结果; (d) 退火前后, 钴铁硼从非晶态结晶转为结晶态的原子结构示意图; (e) $z = {z_{\rm{s}}}$处, 电子密度的模拟结果, 其中电子速度v = 0.5 nm/fs Figure4. (a) Transmitted terahertz signals in W(4.0)/CoFeB(2.2) and (b) Pt(4.0)/CoFeB(2.2) with and without annealing. Inset: Enlarged peak values. (c) The annealing temperature dependence of the resistivity of samples. Inset: result of magneto-optic Kerr measurement of the samples. (d) Schematic diagram of the atomization of CoFeB crystallize from amorphous state to crystalline state before and after annealing. (e) The simulation results of electron density at $z = {z_{\rm{s}}}$. The electron velocity v = 0.5 nm/fs.