1.High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2.University of Science and Technology of China, Hefei 230026, China 3.Scientific-Practical Materials Research Centre of NAS of Belarus, Minsk 220072, Belarus 4.Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China 5.Ioffe Technologies Institute, St. Petersburg 194021, Russia
Fund Project:Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401803, 2017YFA0303603), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH011), the National Natural Science Foundation of China (Grant Nos. 11574316, 51872309, 61805256, 11904367, U1832106, 52011530018), the Special Exchange Program for Russia-Ukraine-Belarus, Chinese Academy of Sciences, the Shanghai Committee of Science and Technology, China (Grant No. 19520710900), and the Basic Research Funds of Belarus in Frame of Belarus-China Research (Grant No. F20CN-021)
Received Date:11 September 2020
Accepted Date:24 September 2020
Available Online:14 October 2020
Published Online:20 October 2020
Abstract:In this paper, the effects of magnetic field and nonmagnetic Y3+ doping on spin state and spin reorientation in HoFeO3 single crystal are systematically studied by the self-developed terahertz time-domain spectroscopy (THz-TDS) under magnetic field. By doping nonmagnetic Y3+, we find that the spin reorientation temperature range decreases. Meanwhile, we also find the type of spin reorientation of HoFeO3 does not change with Y3+ doping, indicating that the Y3+ doping can exchange the interaction energy of Ho3+-Fe3+ without introducing any new magnetic structure. Moreover, the resonance frequency of quasi-ferromagnetic mode (q-FM) decreases with temperature increasing in the low temperature range, while the resonance frequency of quasi-antiferromagnetic mode (q-AFM) increases with temperature increasing in the high temperature range in Ho1–xYxFeO3 single crystals. With the external magnetic field (HDC) applied along the (110) axis, on the one hand the magnetic field can not only tune the resonant frequency of q-FM but also induce the spin reorientation in Ho1–xYxFeO3 single crystals, and on the other hand this magnetic field induced spin reorientation phenomenon can happen more easily if the temperature approaches to the intrinsic spin reorientation temperature range of the single crystals. Besides, the critical magnetic field induced spin reorientation increases with the doping of Y3+ increasing. Our research shows that THz spectroscopy data can be used to detect the doping concentration of Y3+ ions in HoFeO3; in addition, Y3+ doping can make the spin state in HoFeO3 crystal more stable and not easily affected by external magnetic fields. We anticipate that the role of doping and magnetic field in spin reorientation transition will trigger great interest in understanding the mechanism of the spin exchange interaction and the mechanism of external field tuning effect in the vast family of rare earth orthoferrites. Keywords:terahertz time-domain spectroscopy/ rare earth orthoferrites/ spin reorientation/ spin resonance
全文HTML
--> --> -->
3.结果与讨论HoFeO3具有扭曲的钙钛矿结构, 可以用空间群${D}_{2 h}^{16}\text-Pbnm$来描述[16]. 其中Fe3+自旋在奈尔温度(TN = 647 K)以下反铁磁有序, 由于Dzyaloshinskii–Moriya (DM) 相互作用导致两套磁亚晶格的磁化S1和S2具有约0.5°的相对倾斜角度, 并且晶体中具有两种自旋共振模式: 准反铁磁模式(q-AFM, quasi-antiferromagnetic mode)和准铁磁模式(q-FM, quasi-ferromagnetic mode)[36]. 这两种共振模式的频率都在THz范围内, 因此采用THz吸收谱可以有效地探测出q-FM和q-AFM的共振频率及其变化规律, 从而分析出样品中的自旋状态. HoFeO3中倾斜的反铁磁结构导致了非零的铁磁净磁矩M = S1 + S2和G型反铁磁磁矩L = S1 – S2. 在自旋重取向转变的温度范围内, HoFeO3单晶具有多个磁相变, 其中T3, T2和T1(T3 < T2 < T1)分别对应Γ2→Γ12, Γ12→Γ24, 和Γ24→Γ4磁相变的特征温度点[16,20,36]. 当温度T < T3时, 晶体处于Γ2相, L平行于晶体的c轴, M平行于a轴. 当THz脉冲的磁场分量与c轴平行(HTHz//c), 晶体中的Γ2相对应q-FM共振模将被太赫兹谱观察到(见图1(a)中的红色虚线). 从变温的结果可以看到, 该q-FM共振模的频率随着温度的上升而下降. 当样品温度上升到T3 < T < T2温区时, L向(100)面逐渐旋转, 最终与c轴夹角θ约为30°, 此时晶体处于Γ12相. 当T = T2时, 晶体发生一阶相变, 反铁磁磁矩矢量突然转向(010)面并且保持与c轴的夹角 θ, 这种转变导致M从a轴转向c轴, 沿c轴方向出现了非零的净磁矩[20,36]. 由于在Γ2→Γ12相变过程中, q-FM共振频率一直随着温度上升而下降, 并没有明显转变点. 因此, 我们无法确定Γ2→Γ12相变的转变点[16,20]. 随着样品温度继续上升至T2 < T < T1时, L从(010)面逐渐转向a轴, 此时晶体处于Γ24相. 当温度T1 < T < TN时, 晶体处于Γ4相, L平行于晶体的a轴, M平行于c轴. 当HTHz//c轴, 样品中Γ4相对应q-AFM共振模将被太赫兹谱观察到(见图1(a)中的蓝色虚线). 从变温的结果可以看到, 该q-AFM共振模的频率随着温度的上升而上升. 这一结果充分表明, THz光谱能有效的探测RFeO3体系中的自旋共振与自旋重取向行为. 图 1 (a)?(c) 不同温度下(110)取向的HoFeO3, Ho0.8Y0.2FeO3和Ho0.6Y0.4FeO3单晶的THz透射谱, 入射的太赫兹磁场分量(HTHz)平行于晶体的c轴, 图中红色和蓝色虚线分别帮助识别准铁磁模式(q-FM)共振峰和准反铁磁模式(q-AFM)共振峰; (d)?(f) 不同Y3+掺杂浓度单晶中的自旋波共振吸收谱随温度的关系. 图中的红色和蓝色的虚线分别代表低温下q-FM共振峰和高温下q-AFM共振峰随温度的变化 Figure1. (a)?(c) THz transmission spectra of the (110) HoFeO3, Ho0.8Y0.2FeO3, and Ho0.6Y0.4FeO3 single crystals measured at different temperatures, the incident THz magnetic component (HTHz) is aligned along c-axis of the crystal. The dashed red and blue lines are guides to the eye for identifying the quasi-ferromagnetic mode (q-FM) and quasi-antiferromagnetic mode (q-AFM) resonant peaks, respectively; (d)?(f) temperature dependence of THz spin wave resonance absorption spectra of single crystals with different Y3+ doping levels. The red dotted lines in the figures represent q-FM resonant absorption peaks change with temperature at low temperature, and the blue dotted lines represent q-AFM resonant absorption peaks change with temperature at high temperature.