1.School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China 2.The First Research Institute of the Ministry of Public Security, Beijing 100044, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61471039)
Received Date:01 April 2020
Accepted Date:25 May 2020
Available Online:10 October 2020
Published Online:20 October 2020
Abstract:Most of the existing selective encryption schemes are based on image processing and cannot be realized by optical structures, so their practicality is limited. Combining the optical design, a local hybrid optical encryption system based on double random phase encoding is proposed. The system proposed in this paper possesses a common aperture and dual optical path structure, which is widely used in optical design and can effectively improve the practicality of optical encryption system. First, important information and non-important information in the original image are separated by a selective beam splitter. Then light waves carrying important information enter into the 4f system for encryption, and light waves carrying non-important information enter into the diffraction system for encryption. Finally, part of the diffraction system ciphertext is replaced with 4f system ciphertext to obtain the final encrypted image. Decryption is the reverse process of encryption. First, the 4f system ciphertext is cut out from the final ciphertext. Then the 4f system ciphertext is used to restore the information replaced in the diffraction system ciphertext, thereby obtaining the complete diffraction system ciphertext. Finally, the two ciphertexts go through the reverse process of their respective systems to complete the decryption. By comparing the statistical characteristics and mean square error of the original image and the encrypted image, the effectiveness of the proposed system's encryption process is proved. By analyzing the peak signal-to-noise ratio of the original image and the decrypted image, the effectiveness of the proposed system's decryption process is proved. The sensitivity of each key of the system is analyzed to prove the security of the system. Especially the system is highly sensitive to selective encryption key, which proves the effectiveness and security of the proposed system for selective encryption. Through simulation, it is verified that the proposed system is very resistant to diffraction attacks. Even if he can obtain all the diffraction keys, the attacker still cannot obtain the selectively encrypted information. Finally, through simulation, it is verified that the proposed system has good noise resistance and crop resistance, and high robustness as well. The proposed system can realize the selective encryption through optical structure, which is safe, effective and highly robust, and thus improving the practicality of selective optical encryption system. Keywords:optical encryption/ double random phase encoding/ selective encryption/ optical design
全文HTML
--> --> --> -->
2.1.加密过程
基于DRPE的局部混合光学加密系统结构如图1所示. 该系统包含两个通道, 4f系统作为被选择信息加密通道, 衍射系统作为未被选择信息加密通道. 当原始图像经过随机相位1(RPM1)的调制后, 由选择性分光镜通过反射和透射将光分为两部分, 选择性分光镜为局部镀有反射膜的薄透明玻璃板, 薄透明玻璃板带来的相位延迟可以忽略不计. 经过分光镜反射的光进入4f系统中, 其中, RPM1到透镜1的光程为f. 这部分光在4f系统的频域处受到随机相位2(RPM2)的被选择部分(图1中RPM2的斜线部分)调制, 经过透镜2得到加密图像${\varphi _{4 f}}$, ${\varphi _{4 f}}$就是原始图像中被选择的局部信息对应的加密图像. 经过分光镜透射的光进入到衍射系统中, 经过一次衍射距离为2f的衍射后被RPM2调制, 再经过一次衍射距离为2f的衍射后得到加密图像${\varphi _{{\rm{dif}}}}$. 将图1中通过衍射系统得到的加密图像${\varphi _{{\rm{dif}}}}$中的斜线部分用${\varphi _{4 f}}$替换, 得到最终的加密图像$\varphi $. 其中, ${\varphi _{4 f}}$和RPM2中的被选择部分与${\varphi _{{\rm{dif}}}}$中被替换的部分尺寸相同. 图 1 提出的系统加密部分示意图(f是透镜1和透镜2的焦距) Figure1. Schematic diagram of the proposed encryption system (f is the focal length of lens 1 and lens 2).
对于衍射加密系统来说, 衍射距离和波长是可以作为密钥的, 此前已经有很多针对衍射加密系统的研究[9,24], 这些研究都证明了衍射加密系统对于衍射距离和波长的敏感性. 本节只对系统中的衍射系统部分进行分析, 结果如图11所示. 本文提出的系统中, 两次衍射距离都是透镜的焦距的2倍, 在实际的应用中, 两次衍射距离完全可以不同, 可以为任意距离. 图 11 解密时衍射距离和波长对解密图像的影响, 正确的衍射距离为100 mm(两次衍射距离相同), 正确的波长为0.632 μm (a)衍射距离对解密图像的影响; (b)波长对解密图像的影响 Figure11. The effect of diffraction distance and wavelength on decrypted image during decryption: (a) The effect of diffraction distance on the decrypted image; (b) the effect of wavelength on decrypted image. The correct diffraction distance is 100 mm (the two diffraction distances are the same), and the correct wavelength is 0.632 μm.
本节利用不同方差的高斯噪声作为噪声源, 对加密图像进行叠加干扰, 对比了本文提出的系统与基于4f系统的DRPE系统和基于菲涅耳衍射的DRPE系统的抗噪性, 仿真结果如图14所示, 所加的高斯噪声大小为加密图像的均值大小乘以σ, 其中σ为高斯噪声的方差. 由图14可以看到, 虽然本文提出的系统对噪声的鲁棒性不如另外两种系统, 但是当高斯噪声方差小于0.1时, 解密图像和原始图像之间的CC值保持在0.4之上, 可以认为, 本文提出的系统具有良好的抗噪声干扰能力. 图 14 不同的系统对高斯噪声的鲁棒性 Figure14. Different system robustness to Gaussian noise.
33.4.2.系统对加密图像数据丢失的鲁棒性分析 -->
3.4.2.系统对加密图像数据丢失的鲁棒性分析
本节研究了加密图像对数据丢失的鲁棒性, 系统的抗裁剪性仿真实验结果如图15所示. 当加密图像被裁剪10%时, 对原始图像复原影响不大, 因为此时只丢失了小部分衍射加密图像, 从解密图像中也能看出此时只有衍射部分受到了影响; 当加密图像被裁剪30%时, 此时不仅丢失了衍射加密图像, 4f系统的加密图像数据也丢失了一部分, 所以从解密图像上来看, 图像整体都受到了影响, 但依然可以识别出图像的主要信息; 当加密图像被裁剪50%时, 解密图像与原始图像之间的CC值依然保持在0.4以上, 依然可以识别出图像的轮廓信息. 对比本文提出的系统与基于4f系统的DRPE系统和基于菲涅耳衍射的DRPE系统的抗裁剪性, 本文提出的系统的抗裁剪性较优于另外两种系统, 可以认为, 本文提出的系统具有较好的抗裁剪性. 图 15 加密图像被裁剪不同比例时不同系统得到的解密图像 Figure15. Decrypted images obtained by different systems when the encrypted image is cropped at different ratios.
另外, 本节还研究了当加密图像数据随机丢失时, 解密图像的恢复情况, 结果如图16所示, 其中(a), (b), (c)分别为加密图像数据随机丢失10%, 30%, 50%时的解密图像, 它们与原始图像的CC值分别为0.8616, 0.6315, 0.4273, 均大于0.4, 可以认为, 本文提出的系统对于数据丢失具有较好的抗干扰能力. 图 16 加密图像数据随机丢失的解密图像 (a)随机丢失10%; (b)随机丢失30%; (c)随机丢失10% Figure16. Decrypted images where encrypted image data is randomly lost: (a) Randomly lost by 10%; (b) randomly lost by 30%; (c) randomly lost by 40%.