1.College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China 2.State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China 3.Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11802339, 11805276, 61805282, 61801498, 11804387, 11902358), the Scientific Researches Foundation of National University of Defense Technology, China (Grant Nos. ZK16-03-59, ZK18-01-03, ZK18-03-36, ZK18-03-22), the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ1021), the Open Director Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. SKL2018ZR05), the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology, China (Grant No. GNJGJS03), the Opening Foundation of State Key Laboratory of Laser Interaction with Matter, China (Grant No. SKLLIM1702), and the Youth Talent Lifting Project, China (Grant No. 17-JCJQ-QT-004)
Received Date:25 March 2020
Accepted Date:11 April 2020
Available Online:16 September 2020
Published Online:20 September 2020
Abstract:Germanium diselenide (GeSe2), a layered IV-VI semiconductor, has an in-plane anisotropic structure and a wide band gap, exhibiting unique optical, electrical, and thermal properties. In this paper, polarization axis Raman spectrum and linear absorption spectrum are used to characterize the crystal axis orientation and energy band characteristics of GeSe2 flake, respectively. Based on the results, a micro-domain I scan system is used to study the optical nonlinear absorption mechanism of GeSe2 near the resonance band. The results show that the nonlinear absorption mechanism in GeSe2 is a superposition of saturation absorption and excited state absorption, and is strongly dependent on the polarization and wavelength of incident light. Under near-resonance excitation (450 nm), the excited state absorption is more greatly dependent on polarization. With different polarizations of incident light, the modulation depth can be changed from 4.6% to 9.9%; for non-resonant excitation (400 nm), the modulation depth only changes from 7.0% to 9.7%. At the same time, compared with saturation absorption, the polarization-dependent excited state absorption is greatly affected by the distance away from the resonance excitation wavelength. Keywords:anisotropy/ excited state absorption/ micro-domain I-scan
全文HTML
--> --> --> -->
3.1.GeSe2的制备和表征
图1(b)为GeSe2薄片的AFM图. 可以看出, 样品厚度为88 nm, 表面平整, 符合实验要求. 样品偏振相关的拉曼光谱如图1(c)所示, 在波数为118, 212, 251和307 cm–1处分别有4个拉曼峰, 对应着β-GeSe2的典型Ag振动模式[19,32]. 为了定量研究拉曼强度的偏振相关性, 将四种典型拉曼模式的强度绘成极坐标图, 并且引入经典Placzek模型对结果进行拟合和解释. 拉曼强度可以表示为$I\propto \left|{{e}}_{\mathrm{i}}\cdot \tilde{ R}\cdot {{e}}_{\mathrm{s}}^{\mathrm{T}}\right|$, 其中$ {{e}}_{\mathrm{i}} $和$ {{e}}_{\mathrm{s}}^{\mathrm{T}} $分别表示入射光和散射光的单位电极化矢量, $ \tilde{ R} $是拉曼张量. 在本实验条件中, $ {{e}}_{\mathrm{i}} $和$ {{e}}_{\mathrm{s}} $位于a-b平面, 对于与a方向夹角为θ的入射光, 矢量$ {{e}}_{\mathrm{i}} $可表示为$ (0, \mathrm{c}\mathrm{o}\mathrm{s}\theta , \mathrm{s}\mathrm{i}\mathrm{n}\theta ) $. 在平行收集条件下, 散射光方向$ {{e}}_{\mathrm{s}} $同样表示为$ (0, \mathrm{c}\mathrm{o}\mathrm{s}\theta , \mathrm{s}\mathrm{i}\mathrm{n}\theta ) $. Ag模式的拉曼张量由下式给出: 图 1 (a) GeSe2原子结构示意图; (b) 机械剥离GeSe2纳米片的AFM图, 样品的厚度为88 nm; (c) 偏振选择的拉曼光谱, 其中4个拉曼峰位置分别在118, 212, 251, 307 cm–1; (d)—(g) 4个拉曼峰强度分别对应的极坐标示意图 Figure1. (a) Schematic diagram of the atomic structure of GeSe2; (b) AFM image of GeSe2 flake by mechanical exfoliation. The thickness of the sample is 88 nm; (c) polarization-dependent Raman spectrum. Four Raman peak positions are at 118, 212, 251, 307 cm–1, respectively; (d)–(g) polar diagrams of the intensity of the four Raman peaks.
线性吸收谱可用于表征二维材料在不同光谱区域吸收光子的能力分布, 从而间接推断出材料的能级位置, 为光学非线性吸收测试的波长选择提供参考依据. GeSe2纳米片的线性吸收谱如图2(a)所示. 总体而言, 样品对各偏振方向的激光, 线性吸收率均由360 nm波长位置处的40%—50%先下降至420 nm处的约5%, 而后呈现上升趋势; 对于不同偏振方向的激光, 线性吸收率在波长小于380 nm和波长大于410 nm的区域相差较大, 而在400 nm处差异最小. 图 2 线性吸收谱对层状GeSe2的各向异性能带表征 (a) 0°—180°偏振方向的线性吸收谱, 其中间隔15°; (b) 0°偏振方向的能带确定; 由陶克定理间接得到的能带位置, 其中切线与横坐标交点位置为2.717 eV; (c) 90°偏振方向的能带确定; 由陶克定理间接得到的能带位置, 其中切线与横坐标交点位置为2.7291 eV; (d) 层状GeSe2的各向异性能带; b轴方向上的带隙最大, 而a轴方向的带隙最小; (e) 层状GeSe2在400 nm处的各向异性线性吸收率极坐标图; (f) 层状GeSe2在450 nm处的各向异性线性吸收率极坐标图 Figure2. Characterization of anisotropic bands of layered GeSe2 by linear absorption spectrum: (a) Linear absorption spectrum with polarization directions from 0° to 180° with intervals of 15°; (b) the energy band of the 0° polarization direction is determined. The band position obtained indirectly from Tauc’s theorem, where the position of the intersection of the tangent and the abscissa is 2.717 eV; (c) determination of the energy band of the 90° polarization direction. The band position obtained indirectly from Tauc’s theorem, where the position of the intersection of the tangent and the abscissa is 2.7291 eV; (d) anisotropic energy bands of layered GeSe2. The band gap in the b-axis direction is the largest, and the band gap in the a-axis direction is the smallest; (e) polar graph of anisotropic linear absorptivity of layered GeSe2 at 400 nm; (f) polar graph of anisotropic linear absorption of layered GeSe2 at 450 nm.
表1400 nm非共振激发偏振相关的I扫描非线性叠加态吸收参数的拟合结果 Table1.Fitting results of I-scan nonlinear superposition state absorption parameters related to 400 nm non-resonant excitation polarization
通过对比图3(b)与图2(e)发现, 调制深度的极坐标图轴向与线性吸收率的基本符合, 即非线性吸收整体的偏振依赖特性与线性吸收相似. 入射激光偏振90°时, 调制深度最大, 为9.7%, 0°时最小, 为7.0%. 通过改变偏振方向, 调制深度的动态可调范围为2.7%. 由于GeSe2的非线性吸收为饱和吸收与激发态吸收的叠加, 下面进行具体讨论. 饱和吸收对应于(9)式中的前项. 线性吸收系数$ {\alpha }_{0} $的拟合结果如图3(c)所示, 该参数反映出电子由下能级至上能级跃迁的概率, 0°偏振方向激发GeSe2中的电子由价带跃迁至导带内部的概率最低, 90°偏振方向概率最高. 饱和吸收光强$ {I}_{1, \mathrm{s}} $取决于两个因素: 从下能级到上能级的跃迁概率以及上、下能级的态密度[41], 前者由线性吸收系数$ {\alpha }_{0} $反映, 后者为单位能量间隔的可占据状态数, 决定了下能级可被激发的电子以及上能级可供电子填充的能态数, 与电子能带结构有关. 跃迁概率越小, 态密度越大, 材料吸收越难饱和, 饱和光强越大. 因此, 饱和吸收光强$ {I}_{1, \mathrm{s}} $的偏振依赖特性不仅与线性吸收系数$ {\alpha }_{0} $相关, 而且上、下能级受态密度的影响, 故其极坐标图的纺锤形长轴与$ {\alpha }_{0} $的短轴恰好相合, 但偏振依赖程度比之更高. 激发态吸收对应于(9)式中的后一项, 激发态吸收系数$ {\beta }_{0} $可以反映电子由激发态跃迁至上能级的概率, 激发态吸收的饱和项$ {I}_{2, \mathrm{s}} $类似于饱和吸收光强, 由激发态向上能级的跃迁概率以及态密度共同决定. 如图3(e)所示, 激发态吸收系数$ {\beta }_{0} $最小的偏振方向与$ {\alpha }_{0} $是一致的, 即在400 nm非共振激发的情况下, 激发态电子向更高能态跃迁与价带电子向导带跃迁的概率具有相同的偏振依赖特性. 对激发态吸收而言, 价带电子跃迁到导带的概率越大将会导致激发态电子填充的密度越大, 使得激发态吸收更难饱和, 而较高的激发态电子跃迁概率会使得激发态吸收更易于饱和, 二者相反的作用减小了激发态吸收的偏振依赖程度, 导致在400 nm非共振激发波段, 材料对不同偏振激光的非线性吸收程度差异较小. 450 nm近共振激发条件下的非线性响应实验结果如图4(a)所示, 可明显看出样品对此波段不同偏振激光的非线性吸收区别更大. 当峰值功率达到50 GW/cm2时, 0°偏振光的归一化透过率趋于定值, 非线性吸收出现较为明显的反饱和趋势, 与之不同的是, 90°偏振光的归一化透过率继续呈明显下降的趋势. 同样采用拟合公式(7)和(9)对不同偏振下的实验结果进行拟合, 可得调制深度由0°偏振方向的4.6%增长至90°偏振方向的9.9%, 动态调制深度可达5.3%, 远高于400 nm非共振激发条件下的2.7%. 图 4 450 nm近共振激发下不同偏振方向的叠加态吸收实验结果 (a) I扫描实验结果, 圆圈表示实验数据, 实线表示激发态吸收拟合曲线; (b) 偏振相关的非线性调制深度极坐标图; (c) 偏振相关的线性吸收系数α0变化趋势极坐标图; (d) 饱和吸收的偏振相关饱和光强I1,s极坐标图; (e) 偏振相关的激发态吸收系数β0变化趋势极坐标图; (f) 激发态吸收的偏振相关饱和光强I2,s极坐标图 Figure4. Experimental results of superposition state absorption of different polarization directions under 450 nm non-resonant excitation: (a) Results of the I-scan experiment. The circles indicate the experimental data, and the solid lines indicate the excited state absorption curve: (b) polarization-dependent non-linear modulation depth polar plot: (c) polar plot of the change in polarization-dependent linear absorption coefficient α0; (d) polarization diagram of polarization-dependent saturated absorption intensity I1,s; (e) polarization diagram of the polarization-dependent excited state absorption coefficient β0; (f) polarized graph of polarization-dependent saturation light intensity I2,s absorbed by the excited state.
表2450 nm近共振激发偏振相关的I扫描非线性叠加态吸收参数的拟合结果 Table2.Fitting results of I-scan nonlinear superposition state absorption parameters related to 450 nm non-resonant excitation polarization