1.School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China 2.State Key Laboratory of Mechanical Strength and Vibration, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China 3.School of Automobile, Chang’an University, Xi’an 710064, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51576159), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91741110), and the Key Research and Development Program of Shaanxi Province, China (Grant Nos. 2019ZDLGY15-10, 2019ZDLGY15-07)
Received Date:16 April 2020
Accepted Date:24 May 2020
Available Online:05 June 2020
Published Online:20 September 2020
Abstract:Atomization of droplets is ubiquitous in many natural and industrial processes, such as falling rain drops, inkjet printing, fuel injection in automotive and gas-turbine engines. Acoustic irradiation provides a very effective method of atomizing fluid. However, the acoustic atomization of acoustically levitated droplet is seldom studied. To assess the possibility of achieving ultrafine atomization, we, in this paper, systematically study the atomization of an acoustically levitated droplet placed in a hot gas of a flame. High speed camera is utilized to investigate the atomization characteristics of various droplets with diameters ranging from 0.5 mm to 3.5 mm. The experimental results show that the sound pressure of the resonance acoustic field has the ability to atomize the droplet when it is suddenly bathed in hot gas. Here the heating acts as a switch to convert the droplet surface from an acoustic isolator to conductor by heating the surface to strong evaporation. The presence of a high concentration of vapor molecules surrounding the droplet caused the acoustic field to change, thus, a much larger pressure gradient is established along the droplet surface, resulting in the atomization of droplet from the equator. Furthermore, Faraday wave stimulation and discretization on the film cause the droplet to further disintegrate when the droplet diameter is large enough. The atomization consists of three different styles, i.e. rim spray (RS), film disintegration (FD) and normal sputtering (NS). When exposed to hot gas, the droplets with equivalent diameter D0 < 2.8 mm are depleted with RS until the whole mass is atomization. A thin rim is extruded at the equator and then splashed in the equator plane, the spray speed is around 9.5 m/s. Larger droplets end with the sudden FD of liquid film of the residual mass after the the RS has been consumed up. When the thickness of the rim and buckled film decrease to half of wave length, Faraday wave emerges, resulting in the vertical droplet ejection and the disintegration of the thin films. And the droplets with D0 > 3.2 mm undergo further film buckling, forming a closed bubble due to the Helmholtz resonator effect and NS at the bottom. This sound driven atomization of droplets enriches the understanding of fluid mechanism in multi-physical fields, and may provide new ideas for relative application research. Keywords:acoustic levitation/ droplet/ external heating/ atomization/ methanol
全文HTML
--> --> --> -->
3.1.边缘溅射
对于小直径液滴而言, 其质量较小, 液滴受声压作用被压扁后, 直接从赤道面薄边缘位置发生溅射, 并扩展到全液面, $ {D}_{0} $ = 1.81 mm的甲醇液滴变形破碎过程如图2所示. 液滴稳定悬浮时, 其等效直径不变, 当撤开隔板后, 液滴接触热气体后就开始变形. 高温气流速度约为0.5 m/s, 相比于此温度下液滴的变形速率, 液滴受热过程中位置几乎没有变化. 当高温气流接近液滴时, 液滴在赤道面处开始膨胀, 并在赤道面突然出现薄的边缘(t = 0—2Δ, Δ = 0.313 ms), 继而从边缘开始高速溅射, 产生粒径为数微米到数十微米的二次液滴, 形成一团由微型液滴构成的云雾. 受高温气流影响, 液滴在薄边缘处的溅射先从背风侧开始(t = 3Δ), 并快速向迎风侧发展. 喷射时液滴中心厚度远大于其边缘厚度, 这有别于Basu等[16,17]观察到的激光加热雾化现象. 值得一提的是, 该边缘溅射是脉冲性的, 其周期与声场激励频率相关. 图 2 甲醇液滴在悬浮场中的“边缘溅射”(D0 = 1.81 mm) Figure2. High speed images showing the rim spray of an acoustic levitated methanol droplet (D0 = 1.81 mm) suddenly exposed to hot product gases of a Bunsen flame.
$ {D}_{0} $ < 2 mm的甲醇液滴破碎过程直径演变如图3(a)和图3(b)所示. 液滴不断变形被压扁成为圆盘, 这里将其定义为液核. 液核长轴直径$ {D}_{\rm{c}} $增大到临界尺寸后(大约为初始直径$ {D}_{0} $的3倍左右), 液核从赤道面边缘向外溅射子液滴形成一团液雾, 其扩散直径$ {D}_{\rm{s}} $以9.5 m/s的速度恒定增长, $ {D}_{\rm{c}} $急剧下降为0, 液滴完全破碎雾化. 值得一提的是, $ {D}_{\rm{c}} $处于平台期的波动是液核边缘二次液滴的脱离造成的. 图 3 甲醇液滴溅射时的参数描述 (a) 扩散直径; (b) 无量纲液核直径; (c) 赤道处曲率半径; (d) 气液界面在室温和强蒸发时的液体与空气分子分布[21] Figure3. Parametrical description of the breaking process: (a) Spreading diameter Ds; (b) the dimensionless diameter Dc of liquid core; (c) equatorial curvature radii Rcav vs. time; (d) liquid and air molecule distribution at the interface at ambient temperature and strong evaporation conditions[21].
液滴在赤道处的曲率半径$ {R}_{\rm{cav}} $对液滴的稳定性起着至关重要的作用, $ {R}_{\rm{cav}}={D}_{\rm{v}}^{2}/{D}_{\rm{c}} $, $ {D}_{\rm{c}} $和$ {D}_{\rm{v}} $分别为液滴的长轴直径和纵轴长度. 液滴被压扁在赤道面形成薄边缘后以其厚度的一半作为曲率半径. 液滴在稳定悬浮时$ {R}_{\rm{cav}} \approx $ 0.4 mm, 产生薄边缘后, $ {R}_{\rm{cav}} $下降为初始值的5% ($ \approx $ 0.02 mm), 如图3(c)所示. 液滴内部由表面张力引起的压力$ {P}_{\rm{ST}} $可以根据液滴形状由拉普拉斯公式$ {P}_{\rm{ST}}=\sigma /{R}_{\rm{cav}} $计算, $ \sigma $为液滴表面张力, 液滴稳定悬浮时$ \sigma $ = 22.3 mN/m, 当液滴表面温度升高后$ \sigma $下降20% ($ \sigma $ = 17.8 mN/m). 因此液滴稳定悬浮时的内部压力$ {P}_{\rm{ST}}\approx 55.8$ Pa, 当液滴接触高温气流后, 液滴内部毛细压力此时增加至$ {P}_{\rm{ST}}\approx 890$ Pa. 液滴稳定悬浮时两极与赤道面处的压差与其内部压力相等, 而当热气流扫过液滴后产生一个巨大的压差作用于液滴表面将其挤压变形, 忽略表面张力的约束作用, 由流体速度和压力的关系式$ {v_{\rm{s}}} \!=\! 2\sqrt {2\Delta P / \rho } $ = 9.5 m/s ($ \rho $为甲醇密度)可估算出液滴溅射时的压差$ {\Delta }P \approx 8.93 $ kPa. 由此可见, 无论稳定悬浮还是产生变形, 液滴内部由表面张力引起的压力均远小于其破碎所需的压力, 即${P}_{\rm{ST}} \ll \Delta P$. 而后者与声场最大压力相当(约9 kPa), 因此可以推断液滴产生边缘溅射主要是由声场最高压力变化突然施加于液滴表面引起的. 此现象尚未见诸报道, 下面尝试对此转变的原因进行分析. 首先考虑高温气体对流场产生的影响. 由于液滴在悬浮时发射端和反射端的距离略大于室温空气声波半波长的整数倍[19], 而且其在声场中的悬浮位置并不是处于共振节点处, 而是位于节点偏上的某个位置. 当高温气流突然引入声场后, 高温气体声速较高, 声波波长减小, 使共振节点上移靠近液滴, 从而使液滴周围声场强度突然升高. 然而, 室温下对悬浮液滴人为地通过减小声场高度和增加信号发生器电流的方式突然地增加液滴附近声场强度, 实验结果如图4所示, 虽然可以将液滴“压扁”, 甚至产生“法向溅射”, 但却不能形成“边缘喷射”. 这表明, 声场中高温介质产生的共振效应不是“边缘喷射”的主要因素. 图 4 分别通过手动(a)减小声场高度与(b)增加超声信号发生器电流的方式突然增加声场强度后悬浮甲醇液滴的雾化情况 Figure4. Atomization methanol droplets after the enhancement of the acoustic field via the mandatory sudden (a) decrease of acoustic field height and (b) increase of the current of ultrasound generator.