1.State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2.Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China 3.Shenzhen Engineering Center for the Fabrication of Two-Dimensional Atomic Crystals, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China 4.Beijing Academy of Quantum Information Science, Beijing 100193, China
Abstract:Black phosphorus (BP) has been attracting intense interest due to its unique anisotropic properties. The investigations on phonon dispersion and electronic band structure could expand the understanding of the properties of BP and promote its application on next generation nano-electronic devices. As the fingerprint of materials, Raman spectroscopy can provide the information of their phonon dispersion and electronic band structure. According to the Raman selection rule, Raman process involving multiple (two or more) phonons can be used to probe the phonon density of states within the whole Brillouin zone. However, the intensity of high-order Raman modes is much lower than that of the first-order Raman mode. To break through the limit of low intensity, here, we measured the resonant Raman spectroscopy of BP excited by several wavelength lasers and observed rich information about high-order Raman modes in the spectral range of 680–930 cm–1. To further investigate high-order Raman modes and avoid the birefringence effects from optical anisotropy on Raman intensity, we employ a special polarization configuration to obtain resonant Raman spectra and Raman intensity as a function of excitation wavelength. All the observed high-order Raman modes are certainly assigned, according to the phonon dispersion and symmetry analysis of related phonons. This indicates the great contribution of phonons within the Brillouin zone to the second- and third-order Raman scattering. This work proposes a general and systematical method to investigate high-order Raman modes, and paves ways for the researches of phonon dispersion and resonance Raman spectroscopy in other anisotropic materials. Keywords:black phosphorus/ second-order Raman mode/ third-order Raman mode/ resonant Raman scattering/ optical anisotropy
全文HTML
--> --> -->
3.结果及讨论图1(a)给出了黑磷的晶体结构, 在zigzag (ZZ) 和armchair (AC)方向表现出了明显的各向异性. 图1(b)给出了黑磷一阶拉曼模的原子位移示意图. 黑磷体材料与单层(奇数层)黑磷同属于$ D_{2 h} $点群. 图1(c)为理论计算所得的黑磷体材料的声子色散曲线和相应的声子态密度[9]. 其中, 布里渊区$ \varGamma $点声子波数与通过拉曼光谱所测相应拉曼模的波数较为一致. 声子色散在ZZ和AC方向显著的差异表明, 无论是声学支还是光学支, 黑磷的声子色散曲线都具有显著的各向异性. 这种各向异性对其热学、光学和电学性质都有明显的影响. 因此探测非布里渊区中心的声子对于理解黑磷各向异性的性质很有意义. 图 1 (a)黑磷的晶体结构; (b)声子模的原子位移示意图; (c)黑磷的声子色散、声子态密度以及第一布里渊区示意图; 布里渊区中心的各拉曼模已在图中标出[9] Figure1. (a) Crystal structure of black phosphorus; (b) atomic displacements of phonon modes in black phosphorus; (c) phonon dispersion, vibration density of states (VDOS) and schematic diagram of first Brillouin zone of bulk black phosphorus. Raman modes at the Brillouin zone center are labeled[9]
图2(a)给出了探测黑磷偏振拉曼光谱的光路示意图. 通常将黑磷的ZZ方向标记为x轴, 垂直于黑磷层内平面的方向定义为y轴, 而黑磷的AC方向定义为z轴[15]. 在激发光垂直于黑磷平面入射的背散射配置下, 黑磷各个振动模的拉曼张量为: 图 2 (a)偏振拉曼实验的配置. 固定拉曼信号光路上检偏器的检偏方向($\theta_{\rm s} = 0$), 以探测具有相应偏振方向的散射光. 通过旋转半波片, 可以改变激发光与x轴的夹角$\theta_{\rm i}$; (b)在VV($\theta_{\rm i}=0^{\circ}$)和HV($\theta_{\rm i}=90^{\circ}$)偏振配置下, 包含$ {\rm{B}_{1g}}$, $\rm B_{3 g}^1$, $ {\rm{A}^1_g} $, $ {\rm{A}^2 _g}$和$ {\rm{B}_{2g}} $一阶拉曼模的拉曼光谱; (c)在不同波长激光的激发下, 黑磷三个主要的一阶拉曼模的峰强与$\theta_{\rm i}$的依赖关系. 不同颜色对应不同的激发波长, 符号散点给出了峰强的实验值, 实线给出了峰强随$\theta_{\rm i}$变化的拟合结果 Figure2. (a) Experimental configuration. The polarization direction of Raman signal is fixed ($\theta_{\rm s} = 0$). The angle between polarization direction of incident light and x axis is $\theta_{\rm i}$, which can be changed by rotating a half-wave plate; (b) Raman spectra in the range of $ {\rm{B}_{1g}} $, $\rm B_{3 g}^1$, $ {\rm{A}^1 _g}$, $ {\rm{A}^2 _g}$ and $ {\rm{B}_{2g}} $ modes, under the VV($\theta_{\rm i}=0^{\circ}$) and HV($\theta_{\rm i}=90^{\circ}$) configurations; (c) the $\theta_{\rm i}$-dependent Raman intensity excited by different wavelengths. The solid lines indicate fitting results.