1.School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China 2.School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
Abstract:The forthcoming lunar exploration of Chang’e-5 (CE-5) mission will be the first sampling return project of China. The actual drilling needs the information about real-time illumination and corresponding temperature. To give a support for the project, in this paper the SPICE software system is first used to calculate the real-time illumination at the CE-5 candidate landing site Mons Rümker. It is found that our synthetic map of illumination is consistent with the morning map of illumination provided by the Japan’s SELENE satellite. This result verifies the rationality of our algorithm and the corresponding code. According to the calculated illumination and considering a one-dimensional heat conduction model, we study the temperature distribution over Mons Rümker. It is found that the regolith temperature near the surface is greatly related to the illumination, but varies a little with the depth increasing. It is also discovered that the regolith temperature beneath a depth of 0.57 m will not change any more. To give a support for the actual drilling program, it is recommended to consider the temperature difference between the outside and inside of the regolith, especially their stresses caused by such a temperature difference. Moreover, considering the drilling depth of CE-5 larger than 0.57 m, it is likely to measure the heat flow for the constant-temperature layer. We propose that for the next lunar exploration following CE-5 the measurement of heat flow is considered. This will promote the research of lunar science. Keywords:CE-5/ Mons Rümker/ real-time illumination/ temperature distribution
2.地形模型和光照条件Mons Rümker高原的平均面积约为4000 km2, 地形图如图1白色方框区域所示. 本文采用的数字地形模型, 来自LRO (lunar reconnaissance orbiter)的激光测高数据LOLA (lunar orbiter laser altimeter). LRO自2009年发射以来, 其激光测距载荷LOLA取得了高精度的月球全球地形数据, 促进了月表永久阴影区及水冰的研究, 同时也确保了月球全球高精度大地参考框架的建立, 为后续载人登月提供了安全保障[18]. LRO目前仍处于在轨状态, 尽管后期拓展任务阶段因调轨操作, 无法采集月球北半球地形数据, 但激光测距载荷LOLA仍然在不断地更新数据, 地形格网数据已更新至2019年(https://pds-geosciences.wustl.edu/missions/lro/lola.htm). 本文采用的地形模型, 来自LOLA的格网数据LDEM_512_00N_45N_270_ 360 (1/512o × 1/512o), 其分辨率约为59.2 m × 59.2 m. 其中, 黑色方块表示文献[10]建议的“嫦娥5号”候选登陆点(303.34oE, 40.11oN). 图 1 Mons Rümker区域地形图, 如白色方框所示, 其中黑色方块表示文献[10]建议的“嫦娥5号”登陆点(303.34oE, 40.11oN) Figure1. Topography around Mons Rümker region, which is figured out with a white box. The black box indicates the candidate landing site of CE-5 proposed by reference [10], and this site is centered at (303.34oE, 40.11oN)
4.结果与分析为了测试算法与程序的合理性, 图3给出了Mons Rümker高原的早晨光照分布. 该图对应月球地方时tm = 06:30:30, Mons Rümker高原在早晨相应时刻, 地表对太阳光反射的相对光强度分布. 其中图3(a)来自日本SELENE卫星提供的早晨光照影像(http://darts.isas.jaxa.jp/planet/pdap/selene/), 由影像TCO_MAPm04_N42E300N39E303SC和TCO_MAPm04_N42E303N39E306SC拼接得到, 其中白色和黑色分别代表光照强度最强和最弱, 其他颜色表示光照强度在两者间的变化. 图3(a)表明太阳光自东向西, 东边光照强度强, 西边光照弱; 迎光方向出现光亮区域, 而背光方向则由于地形遮挡出现阴暗区域. 采用与图3(a)相同的光照时刻, 图3(b)表示基于LOLA地形模型、(1)式和(10)式求解的相对光强度RII(relative intensity of illumination). 图3(b)中等高线表示Mons Rümker高原, 相对半径为1737.151 km的参考球面的地形高. 由图3(b)可知: 1)东边相对光强度强, 西边相对光强度弱; 2)东边迎光方向部分区域, 由于坡向正对太阳光, 相对光强度较强, 呈现出白色; 3)西边背光方向部分区域, 由于地形遮挡, 相对光强度接近于零, 呈现出黑色. 对比图3(a)和图3(b), 可以发现除少部分小区域外, 两者光照强度的分布总体上一致. 部分小区域出现偏差, 主要是由于光照计算采用的LOLA地形模型的分辨率, 低于日本SELENE卫星提供的早晨光照影像所致. 本文计算的光强度分布, 在总体上与观测结果一致, 说明整个算法及计算程序具有一定的合理性, 可以进一步应用于Mons Rümker高原风化层温度的估算. 图 3 Mons Rümker区域早晨光照图, 对应月球地方时tm = 06:30:30 (a)日本SELENE卫星提供的早晨光照图; (b)本文计算的与图3(a)相同时刻的实时光照图 Figure3. Morning map of illumination over Mons Rümker at the lunar local time tm = 06:30:30: (a) Japan’s SELENE morning map of illumination; (b) our estimated relative intensity of illumination at the same time of Fig. 3(a)
利用本文计算的实时光照强度, 根据(2)— (7)式, 可以求出Mons Rümker高原风化层的实时温度分布. 为了计算风化层不同深度处的温度, 利用文献[14]提供的标准化有限差分方法对(2)式进行数值计算. 图4给出了Mons Rümker高原不同时刻的表面温度, 其中图4(a)对应协调世界时UTC(universal time coordinated): 2020年10月28日11点30分00秒, 简写为UTC 2020-10-28T 11:30:00, 后文所有时间依此格式表述. 此时, 由于没有太阳光照, 大部分区域的温度在80 K左右. 至图4(b)时(UTC 2020-10-29T 06:45:00), 随着太阳光的到来, 东边温度逐渐升高, 特别是坡向正对太阳光的区域, 温度一度接近200 K, 西边由于背光, 温度维持在120 K左右. 随着太阳高度角的增大, 类似情况也出现在图4(c)中, 大部分区域的温度升至200 K左右, 高温区域一度接近280 K, 该图对应的时刻为UTC 2020-10-30T 06:45:00. 到达正午时分(如图4(d)所示, 对应时刻为UTC 2020-11-02T 04:45:00), 大部区域的温度升至360 K左右, 少部分区域接近或超过400 K. 至图4(e)时, 由于太阳高度角的下降, 光照减少, 表面温度也逐渐下降. 此时, Mons Rümker高原处于月球地方时的下午时分, 太阳光照至西向东, 西边迎光方向光照强, 东边背光方向光照弱, 对应时刻为UTC 2020-11-12T 02:45:00. 如图4(f)所示(对应时刻为UTC 2020-11-12T 17:00:00), 随着太阳高度角的进一步降低, 大部分区域的温度降至120 K左右, 西边迎光方向部分区域的温度维持在200 K左右. 尽管温度下降, 部分背光区域的温度一度高于200 K, 这些区域恰好对应图4(b)—(d)中的高温区域. 在表面光照强时, 这些高温区域的热量不断地向风化层底部传递, 至图4(f)时, 尽管表面光照减弱, 已传递至风化层内部的热量反向传递至风化层表面, 使得表面温度升高. 由于这些区域内部温度高于其他区域, 至图4(f)时, 尽管光照减弱, 得到内部热量的补充, 表面温度仍然高于其他区域. 图 4 Mons Rümker区域表面温度分布图 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00 Figure4. Surface temperature distribution with time over Mons Rümker plateau: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00
这种结论也可以由图5得到佐证. 图5表示Mons Rümker高原风化层5 cm深度的温度分布, 对应时刻与图4各分图一致. 由图5(a)—5(c)可知, 随着太阳光照增加, 尽管表面温度在升高(如图4(a)—4(c)所示), 但风化层5 cm深度处的温度始终维持在200 K左右, 至正午时分图5(d)时, 底部温度才有所升高. 这说明月球风化层的导热能力较弱, 具有一定的绝热性能, 该结果与文献[14,15]的一致. 随着下午时分太阳光照的减弱, 尽管表面温度下降至120 K左右(如图4(e)和图4(f)所示), 但5 cm深度的温度始终维持在260 K左右, 部分区域甚至达到300 K. 此时, 随着表面温度下降, 内部温度高于月表温度, 热量由内向外传递, 使得图4(f)部分背光区域的温度高于邻近区域. 图 5 Mons Rümker区域底部5 cm深度的温度分布图 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00 Figure5. Subsurface temperature distribution at the depth of 5 cm over Mons Rümker plateau: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00
为了进一步探究风化层的温度变化, 图6给出了温度随深度变化的剖面图, 剖面方向沿图1蓝色直线的方向, 横轴表示经度, 纵轴表示深度, 对应时刻与图4和图5一致. 由图6(a)—(c)可知, 随着太阳光照的增加, 风化层5 cm深度以内的温度不断地增加, 5 cm以下的温度变化较弱, 这与图5(a)—(c)的结果一致. 至正午时刻图6(d)时, 表面温度升至最大值, 热量向风化层内部传递, 内部温度不断升高. 图6(d)中黑色曲线表示沿剖面方向的表面地形轮廓, 其幅度表示地形的相对变化, 其大小与图6纵轴刻度范围无关, 该图表明温度的变化与地形有关. 至图6(e)和图6(f)时, 内部储存的热量向表面传递, 使得表面对应区域的温度高于邻近区域. 图 6 剖面温度沿图1所示经度方向的分布 (a)对应时刻为UTC 2020-10-28T 11:30:00; (b)对应时刻为UTC 2020-10-29T 06:45:00; (c)对应时刻为UTC 2020-10-30T 06:45:00; (d)对应时刻为UTC 2020-11-02T 04:45:00; (e)对应时刻为UTC 2020-11-12T 02:45:00; (f)对应时刻为UTC 2020-11-12T 17:00:00. 图6(d)所示黑色曲线表示图1蓝线方向的表面地形轮廓 Figure6. Temperature variation along the longitude direction shown in Fig.1: (a) Time at UTC 2020-10-28T 11:30:00; (b) time at UTC 2020-10-29T 06:45:00; (c) time at UTC 2020-10-30T 06:45:00; (d) time at UTC 2020-11-02T 04:45:00; (e) time at UTC 2020-11-12T 02:45:00; (f) time at UTC 2020-11-12T 17:00:00. The black carves in Fig. 6(d) represents the surface topography along the same blue line direction displayed in Fig. 1
为了进一步研究0.2 m深度以下的温度变化, 图7给出了两个参考点不同深度处温度随时间的变化关系. 其中, 图7(a)表示“嫦娥5号”候选登陆点(图1所示黑色方块)的温度变化, 图7(b)表示另一参考点(图1所示黑色五角星)的温度变化. 由图7可知, 两个参考点的温度在0.27 m深度的温度最小值在239 K左右. 温度变化幅度随着深度的降低逐渐减小, 到达0.57 m深度时, 温度几乎不再变化, 保持在241.5 K左右. 结合图4—图7, 保守估计风化层的常温层深度在0.6 m. 参考文献[4], “嫦娥5号”的钻井深度接近2 m, 在进行钻井作业及仿真分析时, 有必要考虑风化层内外温度的差异; 另外, 考虑到常温层深度在0.6 m左右, “嫦娥5号”的钻井深度达2 m, 能探测到常温层的热流. 结合“嫦娥5号”的钻井经验, 后期探月工程可考虑搭载探测月球内部热流值的载荷, 以促进月球内部结构及热演化研究的发展. 图 7 底部温度随时间的变化 (a)“嫦娥5号”候选登陆点的底部分温度变化; (b)图1中黑色五角星所示参考点的底部温度变化 Figure7. Subsurface temperature variations: (a) Variations for the point of CE-5 candidate landing site; (b) variations for the black star in Fig. 1
表2参考点(图1中黑色五角星)温度(单位为K)在不同时刻随深度的变化 Table2.Temperature (in K) variations with depth for the point of black star in Fig. 1 at various lunar local time
图 8 参考点(图1中黑色五角星)温度随深度的变化 (a)对应月球地方时tm = 06:30:30; (b)对应月球地方时tm = 12:30:30; (c)对应月球地方时tm = 18:30:30 Figure8. Subsurface temperature variations with depth for the point of black star in Fig. 1: (a) Temperature variations at the lunar local time tm = 06:30:30; (b) temperature variations at the lunar local time tm = 12:30:30; (c) temperature variations at the lunar local time tm = 18:30:30