Fund Project:Project supported by the Young Scientists Fund of the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016AQ09), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704219)
Received Date:24 December 2019
Accepted Date:15 January 2020
Published Online:05 May 2020
Abstract:Based on the transmission properties of against backscattering and robustness against defects, photonic topological insulators have opened up a novel way to steer the propagation of electromagnetic wave. In order to construct the photonic analogs of the quantum spin Hall effect in an electronic system, we propose a simple two-dimensional photonic crystal made of dielectric materials to realize topologically protected edge states associated with the photonic pseudospin. The photonic crystal comprises a honeycomb array of equilateral-triangle-ring-shaped silicon rods embedded in an air host. By simply rotating the silicon rods around their respective centers by 60°, the band inversion between a twofold degenerated dipolar mode and a twofold degenerated quadrupolar mode is clearly observed in the Brillouin zone center. For the double twofold degenerated states, the chirality of the time-averaged Poynting vector surrounding the unit cell center (i.e., right-hand or left-hand circular polarizations) plays the role of the pseudospin degree of freedom in the present photonic system, and their point group symmetry can be utilized to construct a pseudo-time-reversal symmetry. By utilizing ${{k}} \cdot {{p}}$ perturbation theory, we develop an effective Hamiltonian for the associated dispersion relation around the Brillouin zone center and calculate the spin Chen number, which indicates that the band inversion leads to a topological phase transition from a trivial to a nontrivial state. With numerical simulations, we unambiguously demonstrate that the unidirectional propagation of pseudospin-dependent edge state along the interface between a topologically nontrivial photonic crystal and a trivial one, and robustness of the edge states against different defects including sharp bend and cavity, regardless of the type of interface. The photonic system proposed by us consists of dielectric materials and the corresponding lattice structure is simple. And without changing the fill ratio or changing the positions of the silicon rods, a simple rotation of the silicon rods can generate the topological phase transition. So the potential applications of the pseudospin-dependent edge states based on our design are expected in more efficient way. Keywords:photonic crystal/ band inversion/ topological phase transition/ pseudospin
全文HTML
--> --> --> -->
2.1.光子晶体系统
如图1(a)所示, 将两个正三角环形硅柱子组成一个“人工原子”(图1(a)中用紫色标记), 让“人工原子”在空气中按三角晶格结构排列, 每一个硅柱子中心均位于六角蜂窝结构的格点上, 并且其朝向与晶格点阵的高对称方向重合. 因此, 整体上构造出与石墨烯晶格结构[35]类似的六角蜂窝状光子晶体. 在这里, 取晶格常数为a, 硅柱子相对空气的介电常数和磁导率分别为${\varepsilon _{\rm{r}}} = 12$和${\mu _{\rm{r}}} = 1$, 其横截面上内外正三角形顶点到中心的距离分别为${r_1} = {{0.2 a} / {\sqrt 3 }}$和${r_2} = {{0.45 a} / {\sqrt 3 }}$, 相邻硅柱子中心的相对距离为$L = {a / {\sqrt 3 }}$. 将图1(a)中所有硅柱子绕各自中心转动60°后, 得到另一种蜂窝结构的光子晶体, 如图1(b)所示, 对应的“人工原子”在图中用橙色标记. 图 1 二维光子晶体的蜂窝结构示意图 (a) 由两个正三角环形硅柱子所组成的“人工原子”(图中用紫色标记)在空气中排列而成的三角晶格结构; (b) 与(a)相同, 但组成“人工原子”的两个硅柱子绕各自中心转动60°(图中用橙色标记). a为晶格常数, ${{{a}}_1}$和${{{a}}_2}$为晶格基矢, 硅柱的相对介电常数${\varepsilon _{\rm{r}}} = 12$和相对磁导率${\mu _{\rm{r}}} = 1$, 内外正三角形的顶点到硅柱中心的距离分别为${r_1} = {0.2 a} / {\sqrt 3 }$和${r_2} = {0.45 a} /$${\sqrt 3 } $, 相邻硅柱中心的相对距离为$L = {a / {\sqrt 3 }}$, 红色正六边形所标记的区域表示三角晶格的原胞 Figure1. Schematics of the honeycomb structure of two-dimensional photonic crystals: (a) Triangular lattice structure of “artificial atoms” composed by two equilateral-triangle-ring-shaped silicon rods, which are labeled by purple in the figure, embedded in an air host; (b) the same as pa-nel (a), except that the silicon rods are rotated by 60° around their respective centers, the corresponding “arti-ficial atom” is labeled by orange in the figure. ${{{a}}_1}$ and ${{{a}}_2}$ are unit vectors with length a as the lattice constant. The relative permittivity and permeability of silicon rods are ${\varepsilon _{\rm{r}}} = 12$ and ${\mu _{\rm{r}}} = 1$, respectively. The distance from the vertices of the inner and outer equilateral triangles to the center of the silicon rod are ${r_1} = {{0.2 a} / {\sqrt 3 }}$ and $ {r_2} = $$ {{0.45 a} / {\sqrt 3 }}$, respectively. The distance between the centers of the neighboring silicon rods is $L = {a / {\sqrt 3 }}$. Red hexagons represent the unit cells of the triangular lattices.
其中$\varOmega $表示原胞面积, 积分遍及整个原胞; ${\delta _{lj}}$是克罗内克函数. 求解波动方程的方法有很多, 可以利用一种基于有限元方法的商业软件COMSOL Multiphysics求波动方程的解, 从而得到光子晶体的本征态和能带结构. 图2(a)和图2(b)分别给出P型和N型光子晶体的能带结构. 由图2可知, 在Γ点有两个二重简并点, 对应本征态的磁场分布如插图所示. 显然, 其中一对二重简并态是两个偶极子态, 而另一对二重简并态则是两个四极子态. 偶极子态和四极子态相伴出现, 并且二者与电子系统中的p, d轨道对称性是相同的, 因此可将偶极子态和四极子态分别称为p态和d态. 两个简并的p态关于x轴和y轴的镜像操作有相反的宇称, 而两个简并的d态关于x轴和y轴的镜像操作有相同的宇称. 这与前面对晶格对称性的分析相一致, p态对应二维不可约表示${E_1}$, d态对应二维不可约表示${E_2}$. 将p态中关于x轴和y轴分别具有偶宇称和奇宇称对称性的本征态记为${{\rm{p}}_x}$态, 另一个记为${{\rm{p}}_y}$态; 将d态中关于x轴和y轴同时具有偶宇称对称性的本征态记为${{\rm{d}}_{{x^2} - {y^2}}}$态, 另一个记为${{\rm{d}}_{xy}}$态. 图 2 能带结构与不可约表示${E_1}$和${E_2}$所对应的本征态 (a) P型光子晶体的带结构; (b) N型光子晶体的带结构. (a), (b)中的插图给出Γ点的二重简并偶极子态(图中标记为${{\rm{p}}_x}/{{\rm{p}}_y}$)和二重简并四极子态 (图中标记为${{\rm{d}}_{{x^2} - {y^2}}}/{{\rm{d}}_{xy}}$)的磁场分布, 深红色和深蓝色分别表示磁场${H_z}$的正负最大值, 旋转硅柱子后发生了能带翻转; (c) P型光子晶体中偶极子态的平均能流密度分布; (d) P型光子晶体中四极子态的平均能流密度分布, 箭头显示能流密度的大小和方向. 在原胞中心附近, 能流密度具有逆时针和顺时针圆偏振特性, 反映出赝自旋向上和赝自旋向下的取向性 Figure2. Band structures and the eigenstates for ${E_1}$ and ${E_2}$ irreducible representations: (a) Band structure of P-type photonic cry-stal; (b) band structure of N-type photonic crystal, the insets of (a) and (b) show the magnetic field distributions of the twofold degenerated dipolar state (marked as ${{\rm{p}}_x}/{{\rm{p}}_y}$) and the twofold degenerated quadrupolar state (marked as ${{\rm{d}}_{{x^2} - {y^2}}}/{{\rm{d}}_{xy}}$) at Γ point, and the positive and negative maxima of the magnetic field, ${H_z}$, are represented by dark red and dark blue, respectively, band inversion takes place under the rotation of the silicon rods; (c) real-space distributions of the time-averaged Poynting vector for the dipolar states in P-type photonic crystal; (d) real-space distributions of the time-averaged Poynting vector for quadrupolar states in P-type photonic crystal; the arrows show the direction and magnitude of the Poynting vector, whose anticlockwise/clockwise circular polarization around the unit cell center reveals the pseudospin-up/pseudospin-down orientation.
由前面的分析可知, 在P型和N型光子晶体分界面上会出现自旋依赖的拓扑边界态. 为证实拓扑边界态的存在, 计算出由拓扑非平庸和拓扑平庸光子晶体所构成的超原胞的投影带结构, 结果如图3(b)所示. 在投影带结构中, 除了两种晶体的体态(图3中用黑点标注)以外, 在共同带隙中还存在着非体态(图3中用红点标注). 计算红点所对应的本征场分布后发现, 它们的磁场主要局域在两种晶体的分界面上, 在晶体内部会迅速衰减. 这说明图3(b)中红点表示边界态的色散关系. 需要注意的是, 边界态的色散关系在Γ点有微小的带隙, 这是因为C6v对称性在两种晶体的分界面上受到一定程度的破坏, 但这并不影响对应结构的拓扑性质. 在图3(b)中取两点C和D, 即${k_{//}}\! =\! \pm 0.02 \times {{\text{π}} / a}$, 所对应的磁场和平均能流密度在超原胞下分界面上的分布如图3(c)和图3(d)所示. 显然, C和D两点的平均能流密度分别呈逆时针和顺时针分布, 这与赝自旋向上态和赝自旋向下态的手性特征相符合. 根据边界态的手性可知, 在图3(a)所示体系的上边界上同时存在两种边界态: 向右传输的赝自旋向下态和向左传输的赝自旋向上态; 在下边界上也同时存在两种边界态: 向左传输的赝自旋向下态和向右传输的赝自旋向上态. 图 3 投影带结构与拓扑边界态 (a) 由拓扑非平庸和拓扑平庸光子晶体所组成的条带形的超原胞结构示意图; (b) 超原胞沿$\varGamma K$方向的投影带结构, 条带形的超原胞中间有20个非平庸原胞, 其两端各有10个平庸原胞, 红点和黑点分别表示边界态和体态; (c) C点所对应的磁场和平均能流密度在超原胞的下分界面上的分布; (d) 与图(c)相同, 但对应的是图(b)中的D点; 红色和蓝色分别代表磁场${H_z}$的正负最大值, 箭头显示能流的大小和方向 Figure3. Project band structure and topological edge states: (a) Schematic of a ribbon-shaped supercell composed of topologically nontrivial crystal with its two edges cladded by topologically trivial crystals; (b) dispersion relation along ΓK direction for the ribbon-shaped supercell, the ribbon has 20 nontrivial unit cells in the middle and 10 trivial unit cells on both sides, the red and black dots display the edge and bulk states, respectively; (c) distribution of the magnetic field and time-averaged Poynting vector around the lower interface of the supercell, corresponding to point C indicated in panel (b); (d) the same as panel (c), but corresponding to the point D indicated in panel (b); the positive and negative maxima of the magnetic field, ${H_z}$, are represented by dark red and dark blue, respectively, and the arrows show the direction and magnitude of the Poynting vector.
25.2.拓扑边界态的单向传输性 -->
5.2.拓扑边界态的单向传输性
将蜂窝状晶格结构沿不同方向裁剪, 可以得到两种典型的边界, 即zigzag型和armchair型[35]. 因此, 将P型和N型光子晶体放在一起会形成两种典型的分界面: zigzag型分界面和armchair型分界面(图4). 在这两种典型分界面上都会出现单向传输且对缺陷免疫的拓扑边界态. 图 4 P型和N型光子晶体的两种典型分界面 (a) zigzag型分界面; (b) armchair型分界面 Figure4. Two typical interfaces between P-type and N-type photonic crystals: (a) Zigzag interface; (b) armchair interface.
为了在拓扑性不同的晶体分界面上激发单一赝自旋的拓扑边界态, 采用由八个天线所组成的手性类点源. 如图5(a)所示, 这八个天线均匀分布于半径$R \approx 0.03 a$的圆上, 并且相邻天线间的相位差为${{\text{π}} / 4}$. 当八个天线的相位逆时针减小时, 它们在空气中所激发的磁场分布如图5(b)所示, 对应的手性类点源可激发赝自旋向上的拓扑边界态; 当八个天线的相位顺时针减小时, 它们在空气中所激发的磁场分布如图5(c)所示, 对应的手性类点源可激发赝自旋向下的拓扑边界态. 在图5(d)中, 将相位逆时针减小的手性类点源置于zigzag型分界面中部, 激发频率$f \approx {{0.95 c} / a}$. 显然, 此类点源所激发的电磁波在两种晶体内部迅速衰减, 这是由激发频率位于两种晶体的共同带隙之中所导致的. 在晶体分界面上, 此类点源只能激发赝自旋向上的边界态, 因此电磁波只能向左传输, 而向右传输的电磁波几乎为零. 与之相反, 将相位顺时针减小的手性类点源置于zigzag型分界面中部时, 电磁场只能向右传输, 对应赝自旋向下的拓扑边界态(图5(e)). 图6给出armchair型分界面上的边界态. 由图6可知, 相位逆时针减小的手性类点源所激发的电磁波只能向下传输, 而相位顺时针减小的手性类点源所激发的电磁波只能向上传输. 上述数值模拟结果表明, 在所设计的两种光子晶体分界面上, 可以出现赝自旋依赖的单向传输拓扑边界态. 图 5 赝自旋依赖的边界态沿zigzag型分界面的单向传输 (a) 由8个天线所组成的手性类点源示意图, 相邻天线的相位差为${{\text{π}} / 4}$; (b) 相位逆时针减小的手性类点源在空气中所激发的磁场分布; (c) 相位顺时针减小的手性类点源在空气中所激发的磁场分布; (d) 由(b)图中的源所激发的电磁波沿zigzag型分界面向左单向传输; (e) 由(c)图中的源所激发的电磁波沿zigzag型分界面向右单向传输. (d), (e)图所示结构的四周包围着完美匹配层; 手性类点源频率为$f \approx {{0.95 c} / a}$, 白色圆标记源的位置, 其中的黑色箭头表示源的相位减小方向; 水平方向的白色箭头表示边界态的传输方向 Figure5. Unidirectional propagation of the pseudospin-dependent edge states localized at the zigzag interface: (a) Schematic of a point-like chiral source made by an eight-antenna array with phase delay of ${{\text{π}} / 4}$ one by one; (b) magnetic field distribution stimulated by the point-like chiral source with an anticlockwise phase delay in the air; (c) magnetic field distribution stimulated by the point-like chiral source with a clockwise phase delay in the air; (d) leftward unidirectional electromagnetic wave propagation excited by the source in panel (b) along the zigzag interface; (e) rightward unidirectional electromagnetic wave propagation excited by the source in panel (c) along the zigzag interface. The structures in panel (d) and (e) are surrounded by the perfectly matched layers; the point-like chiral sources are marked as white circles with operating frequency $f \approx {{0.95 c} / a}$, and their phase delay directions are repre-sented by black arrows; the white arrows along the horizontal direction indicate the propagation directions of the edge states.
图 6 赝自旋依赖的边界态沿armchair型分界面的单向传输 (a) 相位逆时针减小的手性类点源所激发的电磁波沿armchair型分界面向下单向传输; (b) 相位顺时针减小的手性类点源所激发的电磁波沿armchair型分界面向上单向传输; 图中结构的四周包围着完美匹配层; 手性类点源频率为$f \approx {{0.95 c} / a}$, 白色圆标记源的位置, 其中的黑色箭头表示源的相位减小方向; 竖直方向的白色箭头表示边界态的传输方向 Figure6. Unidirectional propagation of the pseudospin-dependent edge states localized at the armchair interface: (a) Downward unidirectional electromagnetic wave propagation excited by the point-like chiral source with an anticlockwise phase delay along the armchair interface; (b) upward unidirectional electromagnetic wave propagation excited by the point-like chiral source with a clockwise phase delay along the armchair interface. The structures are surrounded by the perfectly matched layers. The point-like chiral sources are marked as white circles with operating frequency $f \approx {{0.95 c}/ a}$, and their phase delay directions are represented by black arrows. The white arrows along the vertical direction indicate the propagation directions of the edge states.
25.3.拓扑边界态的鲁棒性 -->
5.3.拓扑边界态的鲁棒性
拓扑边界态的一个重要特性是鲁棒性, 即拓扑边界态对缺陷免疫. 为验证利用设计的光子系统所实现的拓扑边界态具有鲁棒性, 将P型和N型光子晶体拼接到一起, 形成含有四处${90^\circ}$弯曲的分界面(图7(a)). 频率$f \approx {{0.95 c} / a}$的平面电磁波从体系的左侧入射, 结果显示边界态几乎没有反射地向前传输, 即使分界面上有四处${90^\circ}$的弯曲. 在图7(b)中, 将两个硅柱子从分界面上移走, 同样让平面电磁波从左侧入射, 可以发现边界态几乎不受这种空穴缺陷的影响, 仍然可以无反射地向前传输. 由此可知, 在P型和N型光子晶体的分界面上, 拓扑边界态对弯曲、空穴等缺陷免疫, 具有很好的鲁棒性. 图 7 拓扑边界态的鲁棒性 (a) 频率$f \approx {{0.95 c} / a}$的平面波入射到由P型和N型光子晶体组成的系统中所激发的磁场分布; (b) 与(a)图相同, 但在分界面上引入空穴缺陷(图中用椭圆形标出). 图中结构的四周包围着完美匹配层, 红色箭头表示入射方向, 拓扑边界态对分界面上的弯曲、空穴等缺陷免疫 Figure7. Robustness of the topological edge states against defects: (a) Magnetic field distribution under the excitation of a plane wave with operating frequency $f \approx {{0.95 c} / a}$ in the system consisting of P-type and N-type photonic crystals; (b) the same as panel (a), except that a cavity defect (displayed by ellipse) is introduced into the interface. The structures are surrounded by the perfectly matched layers. Red arrows represent the incident directions. The topological edge states are immune to various defects including sharp bend and cavity at the interface.