Abstract: High-order-harmonic generation (HHG) is a fundamental atomic and molecular process in strong laser fields and plays a crucial role in the development of ultrafast science and technology. The essential features in HHG, such as the above-threshold harmonic plateau and cutoffs, can be well understood by the semiclassical three-step model. The HHG cutoff occurs approximately at the energy $3.17{U_{\rm p}} + {I_{\rm p}}$, where ${I_{\rm p}}$ is the atomic ionization potential, and ${U_{\rm p}}$ is the ponderomotive potential. In the past, most studies focused on the HHG above the ionization threshold, and the general pattern of the HHG spectrum can be qualitatively explained by means of the strong field approximation (SFA) and the quantum treatment of three-dimensional time-dependent Schr?dinger equation (TDSE). However, the SFA results in inadequate description for the process in the harmonic generation below the ionization threshold since it neglects the Coulomb potential and the detailed electronic structure of atoms. Recently, as a promising method to produce vacuum-ultraviolet frequency comb, the HHG in the near- and below-ionization threshold has been increased considerably. However, the dynamical origin of in these lower harmonics is less understood and largely unexplored. Here we perform an ab initio quantum study of the near- and below-threshold harmonic generation of hydrogen atom by means of the time-dependent generalized pseudospectral method. We study the intensity dependence of the harmonic spectra below the ionization threshold of hydrogen atom in the intense laser field. The high-order harmonic spectra are calculated by the Fourier transform of the atom induced dipole moment in the laser field. The below-threshold harmonic spectra yield is scaled as a function of the laser peak intensity. We find that the spectra yield in below-threshold harmonic generation (BTHG) dependents on the light intensity in the multiphoton ionization regime. And the laser intensity plays an important role in the channel selection process for BTHG. There are mainly two kinds of quantum channels to be responsible for the BTHG. Namely, the generalized short trajectories and the long trajectories, in which the long trajectories are more sensitive to the laser field intensity. Combining with wavelet time-frequency transform, semiclassical trajectories simulation, and quantum channel analysis associated with the laser intensity, the dynamical origin of the BTHG is uncovered. Keywords:intense laser field/ below-threshold harmonic generation/ ionization threshold/ quantum channel
其中, ${E_0}$为激光场的振幅; T为激光脉冲的周期, $T = {{2{\text{π}}}}/{\omega }$. 图1(a)表示强度在I为$6.0 \times {10^{13}}$, $1.0 \times {10^{14}}$和$1.4 \times {10^{14}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$时, 波长为$800\;{\rm{nm}}$的H原子产生低于电离阈值的高次谐波谱. 随着强度增大, 谐波效率不断增加, 并且峰值逐渐变得尖锐. 图1(b)表示波长为1600 nm情况下H原子产生的低于电离阈值的高次谐波谱, 结果与图1(a)类似, 但是每阶谐波的峰值变得更尖锐. 图 1 H原子产生的低于电离阈值的高次谐波谱 (a)波长为$800{\rm{~nm}}$, 强度为I = 6.0 × 1013 W/cm2 (黑色实线), I = 1.0 × 1014 W/cm2 (红色实线), 以及I = 1.4 × 1014 W/cm2 (绿色实线), 蓝色线表示H原子的电离能${I_{\rm p}}$; (b)同(a)图, 波长为$1600\;{\rm{ nm}}$的情况 Figure1. The HHG spectra produced by the hydrogen atom below the ionization threshold: (a) The wavelength is $800\;{\rm{ nm}}$, and the intensity is $I = 6.0 \times {10^{13}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$(black solid line), $I = 1.0 \times {10^{14}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$(red solid line), and$I = 1.4 \times {10^{14}}\;{\rm{ W/c}}{{\rm{m}}^{\rm{2}}}$(green solid line), the blue lines indicate the ionization energy Ip of hydrogen atom; (b) same as (a), the wavelength is $1600\;{\rm{ nm}}$ case.
为了探索不同电离机制下激光强度对H原子在低于电离阈值下谐波产生过程中的影响, 计算波长为800 nm的情况下, 第5阶谐波(H5)、第7阶谐波(H7)和第9阶谐波(H9)的发射随强度的依赖关系(图2). 1965年, Keldysh[32]提出在适当的激光强度下原子电离的机制具有选择性, 理论上可以采用一个Keldysh参数 $\gamma $来区分电离类型: 图 2 低于电离阈值的H5(黑色实线), H7(红线), 和H9(蓝色实线)的峰值强度随激光场强度的变化. 这里, 波长取为$800\;{\rm{ nm}}$, 其它激光场参数同图1(a). 箭头a, b, c, d分别表示在激光强度$I$为$3.1 \times {10^{13}}{\rm{ }}$, $3.6 \times {10^{13}}$, $4.3 \times {10^{13}}$, 和$6.6 \times {10^{13}}$${\rm{W/c}}{{\rm{m}}^{\rm{2}}}$时H9的峰值强度 Figure2. The peak intensity of H5(black solid line), H7(red line), and H9 (blue solid line) below the ionization threshold as a function of the laser field intensity. Here, the wavelength is $800\;{\rm{ nm}}$, and the other laser field parameters used are the same as those in Fig. 1(a). The arrows a, b, c, and d indicate the peak intensity of H9 at the intensity $I$ of $3.1 \times {10^{13}}{\rm{ }}$, $3.6 \times {10^{13}}$, $4.3 \times {10^{13}}$${\rm{W/c}}{{\rm{m}}^{\rm{2}}}$, and 6.6 × $ {10^{13}}$${\rm{W/c}}{{\rm{m}}^{\rm{2}}}$, respectively.
获得了电子在激光场中对时间依赖的轨迹, 进而可以展示电子返回母核发射谐波的物理图像. 分别计算了四个特殊点处a点(I = 3.1 × 1013 W/cm2) b点(I = 3.6 × 1013 W/cm2), c点(I = 4.3 × 1013 W/cm2)和d点(I = 6.6 × 1013 W/cm2)在激光场峰值前一个周期释放电子的动力学轨迹(图3). 为了便于讨论, 在图3中同时画出了激光场的曲线(红色实线). 图3(a)对应a点的情况, 电子在9.0周期释放, 电子在9.5周期(激光场峰值处红色实线)和10.0周期之间多次返回母核产生谐波, 同时电子返回轨迹较短(广义短轨道). 图3(b)中对应的是b点的情况, 由于这时电子在9.5周期激光场峰值处强度较强, 电子直接被电离出去的概率较大, 所以在9.5周期和10.0周期之间主要是单次返回母核产生谐波, 谐波发射效率会大幅下降. 图3(c)和(d)对应的是c点和d点的情况, 激光强度更强, 这时尽管电子在9.5周期和10.0周期之间没有返回, 但是在10.25周期之后由于电子隧穿电离概率增大, 所以大量电子返回了母核, 整体增强了谐波的强度. 同时可以看出, 电子的返回轨迹较长(广义长轨道). 通过以上分析, 可以很好地理解低于电离阈值谐波对激光强度敏感的物理机制. 图 3 H9曲线上a, b, c, d四个特殊点处对应的电子动力学轨迹, 红色实线代表激光场, 蓝色实线表示电子的轨迹, 黑色虚线表示母核位置. 激光场参数同图2 Figure3. The time-dependent position of electrons at the given laser intensity shown in a, b, c, and d points in H9 curve. The red solid lines represent the laser field, the blue solid lines represent the trajectories of the electron, and the black dotted lines represent the position of the parent nucleus. The other laser field parameters used are the same as those in Fig. 2.
最后, 分析电离阈值下谐波产生过程中量子通道对激光强度的依赖性以及不同量子通道的贡献. 图6(a)—(c)展示了低阶谐波H5, H7和H9量子通道的分析结果, 阈下谐波的产生主要集中在相位为$\alpha = 0$和${\rm{6{\text{π}} }}$附近的两个量子通道, 并且$\alpha = 0$和$6{\text{π}}$的贡献可以解释为广义的短轨道和长轨道的贡献[26]. 从图6不难看出, 短轨道的作用随着激光强度的增加贡献变大, 长轨道对H5和H7的贡献很微弱, 而长轨道对H9的贡献很大, 并且随着激光场的增强, 影响的范围越来越大, 这一结果与图3 经典轨迹分析的结果一致, 是因为随着激光强度的增大隧穿电离机制越来越明显造成的. 通过比较图5(a)—(c)不难发现, 随着激光强度的增大, 低阶谐波的发射是连续的. 根据前面的讨论, $\alpha = 0$量子通道的贡献主要是多光子电离主导的, 而$\alpha = 6{\text{π}}$量子通道分布主要是隧穿电离主导的. 另外, 从图6(a)和图6(b)能够看到, 随着激光强度的变化, H5和H7在$\alpha = 6{\text{π}}$附近发射比较弱; 而在图6(c)中, $\alpha = 6{\text{π}}$附近H9发射比较强是由于广义长轨道的贡献增大所致. 由此, 可以发现阈下谐波的产生过程中, 确实有两种量子通道的贡献, 不同激光强度下, 每一阶谐波产生的通道选择不同, 而且通道的选择对激光强度非常敏感. 图 6 低于电离阈值的谐波的量子通道分布对激光强度的依赖性(激光场参数同图2) (a) H5; (b) H7; (c) H9 Figure6. The distributions of the quantity channels as a function of the laser intensity for the below- threshold harmonics (The laser field parameters used are the same as those in Fig. 2.): (a) H5; (b) H7; (c) H9.